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a  b  s  t  r  a  c  t

The  impact  of  the  opposition  concept  can be observed  in many  areas  around  us.  This  concept  has  some-
times  been  called  by  different  names,  such  as,  opposite  particles  in  physics,  complement  of  an  event
in  probability,  absolute  or relative  complement  in  set  theory,  and  theses  and  antitheses  in dialectic.
Recently,  opposition-based  learning  (OBL)  was  proposed  and  has  been  utilized  in  different  soft  computing
areas.  The  main  idea  behind  OBL  is  the  simultaneous  consideration  of a  candidate  and  its  corresponding
eywords:
pposition-based learning
pposite point
ampling
pposition-based optimization

opposite  candidate  in order  to  achieve  a better  approximation  for the  current  solution.  OBL  has  been
employed  to introduce  opposition-based  optimization,  opposition-based  reinforcement  learning,  and
opposition-based  neural  networks,  as  some  examples  among  others.  This  work  proposes  an  Euclidean
distance-to-optimal  solution  proof  that  shows  intuitively  why  considering  the opposite  of  a  candidate
solution  is  more  beneficial  than  another  random  solution.  The  proposed  intuitive  view is generalized  to

aces  f
pposition-based soft computing N-dimensional  search  sp

. Introduction

Opposition-based learning (OBL) was introduced by Tizhoosh
n 2005 [18]. The main idea behind OBL is the simultaneous con-
ideration of an estimate and its corresponding opposite estimate
i.e., guess and opposite guess) in order to achieve a better approx-
mation for the current candidate solution. Later, by considering
pposite individuals during opposition-based population initial-
zation and generation jumping, OBL was employed to introduce
pposition-based differential evolution (ODE) [3,4,7,8,14,17].  Com-
arative studies have confirmed that ODE performs better than
E in terms of convergence speed. A self-adaptive ODE was intro-
uced in [11]. A comprehensive survey of in differential evolution
re provided in [5,6]. By replacing quasi-opposite numbers with
pposite numbers in ODE, quasi-oppositional DE (QODE) [10,12]
as proposed. Both ODE and QODE used a constant generation

umping rate, variable jumping rates were investigated for ODE
n [13]. A decreasing jumping rate presented better performance

han a fixed one; which means opposition-based generation jump-
ng is more beneficial during exploration than during exploitation.

 self-adaptive ODE with population size reduction was employed

∗ Corresponding author. Tel.: +1 905 721 8668x3843.
E-mail addresses: shahryar.rahnamayan@uoit.ca (S. Rahnamayan),

ary wang@sfu.ca (G.G. Wang), mario.ventresca@utoronto.ca (M. Ventresca).
1 Tel.: +1 778 782 8495.

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2012.03.034
or black-box  problems.
©  2012  Elsevier  B.V.  All  rights  reserved.

to tackle large scale problems 2 [37]. As some applications for ODE
among others, ODE with a small population size (Micro-ODE) was
utilized for image thresholding [16]; results confirmed that the
Micro-ODE converges to optimal solution faster than Micro-DE. An
adaptive ODE applied to tuning of a Chess program [39]. Similarly,
by considering opposite states and opposite actions, opposition-
based reinforcement learning (ORL) was proposed [19,20,24–26]
and showed that ORL outperforms its parent algorithm (RL). ORL
was applied to prostate ultrasound image segmentation [33] and
management of water resources [34]. Furthermore, opposition-
based neural networks were introduced by considering opposite
transfer functions and opposite weights [27,28,30].  Opposition-
based simulated annealing (OSA) was  proposed based on opposite
neighbors [29]. OSA showed improvement in accuracy and conver-
gence rate over traditional SA. By introducing opposite particles,
Particle Swarm Algorithms were accelerated and opposition-based
PSO was  introduced [38,40,45–48]. Opposition-based ant colony
(OACO) algorithms were proposed by introducing opposite(anti)-
pheromone [35,36]. Population-based incremental learning (PBIL)
has also been greatly enhanced by considering opposite samples
[31]. Performance of the harmony search [32] and biogeography-

based optimization [22,23] were improved by OBL. All of these
algorithms have tried to enhance searching or learning in differ-
ent fields of soft computing and they were experimentally verified

2 It uses opposition concept implicitly by changing the sign of F and so searching
in the opposite direction.
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y benchmark functions; a majority of these algorithms and also
ther opposition-based works have been explained in [9].

Among all proposed opposition-based algorithms, the ODE is
he most well-known and promising one. Neri et al. divided mod-
rn DE-based algorithms into the following two categories [6]:
1) DE with an integrated extra component, and (2) DE with a

odified structure. The first group includes the algorithms with
E framework and an extra component, such as, local searchers
nd/or additional operators. The second group contains types of DE-
ased algorithms which modify the main structure of the canonical
E. According to this classification, the same authors considered

he ODE in the second category [6] with other recently proposed
nhanced DE variants, such as, Self Adaptive Control Parame-
ers [56–59],  Global–Local Search DE [60,61], and Self Adaptive
oordination of Multiple Mutation Rules [62–64].  DE suffers from

ts limited amount of the exploratory moves (due to its limited
utation and crossover combinations) which can be improved

y embedding alternative moves [49]. Furthermore, the limited
mount of the moves can cause an undesirable search process stag-
ation; the situation which diversity of the population is still high
ut it does not converge to a solution [50]. The successful extra
oves can be achieved by two ways: (a) increasing the exploita-

ive pressure and/or (b) utilizing some randomization scheme [6].
n this light, the ODE uses the first approach by proposing a new
perator (i.e., opposition-based generation jumping); it checks
nexplored areas of the decision space by utilizing the mentioned
lternative moves [6].  These additional moves improve DE’s explo-
ation performance and also reduce the chance of stagnation by
njecting fitter opposite individuals during the generation jump-
ng. The risk of stagnation is higher when the dimension of the
roblem increases [6,65–69,58]. Probably that is why  ODE even
erforms better on large-scale problems [17]. In literature, there are
ther similar works which have introduced extra moves to improve
E’s efficiency [6]; introducing a trigonometric mutation [51], an
daptive local search [52], memetic DE [53,54], and scale factor
ocal search [55] are some examples among others in this direc-
ion. Weber et al. introduced a scale factor inheritance mechanism
n distributed DE [49], in their proposed mechanism, they have uti-
ized different scale factors for each sub-population to increase the
xploration power of the original DE. In their algorithm, the neg-
tive value for the scale factor means the search in the opposite
irections, which is similar to the ODE mechanism that considers
he opposite individuals during the dynamic generation jumping.

All OBL-based approaches reported promising results but there
as a fundamental question which should be answered prop-

rly: Intuitively, why is the opposite of the current point more
dvantageous than a second pure random point (opposition vs. ran-
omness)? This question has just been addressed in [2] where the
athematical proof and experimental verification confirmed each

ther and proved numerically how much better an opposite point
s when compared to a uniformly generated random point. How-
ver, the proposed proof suffers from two shortcomings: (1) only
ne dimensional search spaces were considered, and (2) the proof is
ot able to provide an intuitive explanation for the observed results.

n [9], the authors mentioned that “Due to our imperfect understand-
ng of interplay between opposite entities, this work will most likely
e a preliminary investigation. Hence, more comprehensive elabora-
ions with a solid mathematical understanding of opposition remains

 subject of future research.” In order to address this issue, we  pro-
ose the current mathematical proof which (1) is much simpler
han the previous proof proposed by the first author [1,2], and (2)
s generalized to higher dimensions, and (3) explains intuitively the

hilosophy behind the opposition concept from the perspective of
istance to the optimal solution.

This paper is organized as follows: the concept of opposition
s described in Section 2. Preliminary definitions and assumptions
mputing 12 (2012) 2828–2839 2829

for the proposed mathematical proof are given in Section 3. The
proposed mathematical proof is explained in Section 4. The results
are compared and analyzed in Section 5 and finally the paper is
concluded in Section 7.

2. The concept of opposition

The footprints of the opposition concept can be observed in
many areas around us. This concept has sometimes been labeled
with different names. Opposite particles in physics, antonyms
in languages, complement of an event in probability, antithetic
variables in simulation, opposite proverbs in culture, absolute or
relative complement in set theory, subject and object in philoso-
phy of science, opposition parties in politics, theses and antitheses
in dialectic, and dualism in religions and philosophies are just some
examples among others to mention.

The Yin-Yang symbol in ancient Chinese philosophy is probably
the oldest opposition concept which was expressed by human kind.
Black and white represent yin (receptive, feminine, dark, passive
force) and yang (creative, masculine, bright, active force), respec-
tively. This symbol reflects the twisted duality of all things in nature,
namely, receptive versus creative, feminine versus masculine, dark
versus bright, and finally passive versus active forces. Even Greek
classical elements to explain patterns in nature mention the oppo-
sition concept, namely, fire (hot and dry) versus water (cold and
wet), earth (cold and dry) versus air (hot and wet). Cold, hot, wet,
dry present the pair-wised opposite characteristics of these four
elements.

It seems that without using the opposition concept, the expla-
nation of different entities around us is hard and maybe even
impossible. In order to explain an entity or a situation we
sometimes explain its opposite instead. In fact, opposition often
manifests itself in a balance between completely different entities.
For instance, the east, west, south, and north cannot be defined
alone. The same is valid for cold and hot and many other exam-
ples. Extreme opposites constitute our upper and lower boundaries.
Imagination of the infinity is vague, but when we consider the
limited, it then becomes more imaginable because its opposite is
definable.

Sometimes we  apply the opposition concept in our regular life
unconsciously. Let us look at a simple example (see Fig. 1). Suppose
police officers want to arrest a suspect in a theater hall arranged
to have two seating groups (A and B) and a number of entrance
doors (a − k) on one side of the hall (Fig. 1(a)). The seat posi-
tion of the target person is unknown (just like the position of the
optimal solution in a black-box optimization problem) and only
two officers are available. If the first officer selects the door a,
which door will likely be selected by the second officer? What
happens if the first officer selects the door b? In order to increase
their chances of successfully arresting the suspect the officers will
arrange themselves such that they cover the most exist possible
(assuming an officer can cover a reasonable distance about their
position).

Let us consider the same example but this time the theater hall
has doors on all four sides, as shown in Fig. 1(b). Now, let us increase
the number of officers (like individuals in a population-based opti-
mization method) and repeat the same questions. When officer one
selects the door h, the second officer will selects d. Why  are the
other doors not selected instead? The third officer will now select
door b, and the fourth will likely choose door f. It seems that even
when we increase the number of officers the opposition pattern for

covering the doors is still followed. These are the officers’ intuitive
decisions in different situations, and perhaps they are unaware of
the concept of the opposition but they apply it in order to cover the
search space more efficiently.
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As mentioned above, the opposition concept has been utilized in
ifferent fields of soft computing in order to enhance evolutionary
lgorithms (e.g., DE, PBIL and PSO), neural networks (NN), rein-
orcement learning (RL), ant colony algorithms (ACA), simulated
nnealing (SA), etc. According to our point of view, the opposition
oncept introduces a new scheme which can be utilized in a wide
ange of scientific areas. To mention an example, opposition-based
ampling can be employed by methods which tackle expensive
esign optimization problems, such as the mode pursing sampling
ethod (MPS) [41,42].

. Preliminaries and intuition

In this section we outline the assumptions and definitions
equired for the subsequent mathematical proof in the following
ection.

.1. Preliminaries

efinition 1. Let a < b ∈ R  and x ∈ [a, b] be selected according to
 uniform distribution. The opposite of x will be denoted as x̆ and
alculated by x̆  = a + b − x.

This definition can be extended to higher dimensions by apply-
ng the same formula to each dimension [18,21].

efinition 2. Let P := XN ∈ R  be an arbitrary point in N-
imensional space such that xi ∈ [ai, bi] for ai < bi ∈ R  and i = 1, . . .,
. The opposite of P, is denoted as P̆  and is calculated as:

˘
 = X̆N = x̆i=1,...,N = ai + bi − xi (1)

The top plot in Fig. 2 illustrates x and its opposite x̆ in inter-
al [a, b]. As is seen, x and x̆ are located at equal distances from
he interval’s center (|(a + b)/2 − x| = |x̆ − (a + b)/2|) and the inter-
al’s boundaries (|x − a| = |b − x̆|) as well. The remaining two plots
onsider dimensions of size 2 and 3.

efinition 3. The Euclidean distance between two  points X = (x1,
2, . . .,  xN) and Y = (y1, y2, . . .,  yN) for X, Y ∈ R

N is defined by

(X, Y) = ‖X, Y‖ =

√√√√ N∑
(x − y )2. (2)
i=1

i i

efinition 4. Let R, X ∈ S ⊂ R
N be randomly selected over some

ounded subspace S in R
N . Also, let pX, pX̆ and pR be the probability
Fig. 2. Illustration of a point and its corresponding opposite in one, two, and three
dimensional spaces.

of guess X, X̆ and R being closer, with respect to Euclidean dis-
tance, to some unknown solution s ∈ S. We assume that s is chosen
according to a uniform distribution. The probabilities are denoted
as follows:

pX = p(d(X, s) < d(X̆, s) ∧ d(X, s) < d(R, s)), (3)

pX̆ = p(d(X̆, s) < d(X, s) ∧ d(X̆, s) < d(R, s)), (4)

pR = p(d(R, s) < d(X̆, s) ∧ d(R, s) < d(X, s)), (5)

pX + pX̆ + pR = 1 (6)

Definition 5. The probability density function for the uniform
distribution is defined as follows:

f (x) =
{ 1

b − a
a ≤ x ≤ b

(7)

0 otherwise

The mean, median, and variance are (a + b)/2, (a + b)/2, and
(b − a)2/12, respectively.
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the search space.

The area surrounded by the dotted square shown in Fig. 4 is the
only region (on average) in which a random point is closer to the

3 We focus on the distance to optimal in sample space, which disregards the
ig. 3. Illustration of the solution’s region for 1-D search space in which a random p
x/x̆, r] and [r, x̆/x].

In the subsequent proof, we make the following assumptions:

 The problem being solved is black-box and no a priori information
is available concerning the location of the optimal solution.

 Due to (1), a uniform distribution is used to generate random
guesses.
There exists a unique global optima s within bounded subspace
S ⊂ R

N .
The Euclidean distance to s is a sufficient approximation for the
quality of a guess within the context of any optimization algo-
rithm.

.2. Distance-based intuition

Before deriving a more comprehensive proof, we provide evi-
ence of the use of opposition (as defined above) from the
erspective of paired samples versus according to the method of
pposite numbers. Specifically, we consider the expected distance
etween two values X, Y ∈ [a, b] chosen at random against X, X̆ . For

oint distribution fXY(x, y) = 1/L2, where L = b − a is the length of the
nterval being considered, this expected distance can be calculated
ccording to

[|X − Y |] = 1
L2

∫ L

0

∫ L

0

|x − y|dxdy. (8)

he inner integral can be evaluated to∫ L

0

|x − y|dy =
∫ x

0

(x − y)dy +
∫ L

x

(y − x)dy

=
[

xy − y2

2

]x

0

+
[

y2

2
− xy

]L

x

=
(

x2 − x2

2

)
+ L2

2
− xL −

(
x2

2
− x2

)
= L2

2
+ x2 − xL.

(9)

ubstituting back into Eq. (8),

E[|X − Y |] = 1
L2

∫ L

0

(
L2

2
+ x2 − xL

)
dx

= 1
L2

[
xL2

2
+ x3

3
− Lx2

2

]L

0

= 1
L2

(
L3

2
+ L3

3
− L3

2

)
= L

3
.

(10)

Therefore, two uniformly sampled points can be expected to
e separated by about 1/3 the size of the interval. This cover-
ge of the search space is somewhat limited considering that the

xpected value of a random guess will fall at the mid-way point
f the interval. If the optimal solution lies within this narrow
ange, the strategy could be promising. However, in general, we
re unsure and assume the optimal is uniformly distributed over
s closer to the unknown solution than x and x̆. k1 and k2 are the centers of intervals

the entire interval. One can follow a similar approach as above to
show E[|X − X̆|] = L/2, which should be expected from Definition
1. In this situation the interval L is covered much better, and thus
we can expect that the distance between a uniformly distributed
optimal solution is likely to be closer to (X, X̆). In the following sec-
tion we  examine the conjecture that the distance3 to the optimal
solution is lower when using the opposite strategy.

4. The main theorem

In this section, pX, pX̆ , and pR are mathematically derived. We
first show evidence for the claim of opposite superiority using one,
two and three dimensional situations. These are then used in the
proof which generalizes to R

N .

4.1. Investigation

4.1.1. One-dimensional space
Consider the situation presented in Fig. 3, which is bounded by

[l, m]  and has a center at point c. Without loss of generality4 let x ∈ [l,
c] and x̆  ∈ [c, m].  Then, the average values of the guess x and oppo-
site guess x̆ are located midway5 in the sub-intervals [l, c] and [c,
m], respectively. Using the same logic, the average of both random
guesses will be located at r = c. Considering these mean values we
can deduce that a uniformly distributed solution s ∈ [l, m]  will, on
average, be closer to the independently randomly generated points
within the region [k1, k2].

Then, the probability of a random point being closer to the opti-
mal  solution can be simply calculated:

pr = |k2 − k1|
|m − l| = 2

8
= 0.25. (11)

Moreover, we  know px = px̆ and that

px + px̆ + pr = 1, (12)

and therefore px = 0.375 and px̆ = 0.375. Recall, pr , px, and px̆ are in
Definition 4.

4.1.2. Two-dimensional space
The two-dimensional situation is very similar to the 1D case.

However, here we  must now consider four possible mean location
of the (X, X̆) pairing. These points are represented by gray dots in
Fig. 4. The diamond area outlined by a dashed line corresponds
to the area where a random guess will outperform the opposite
strategy, on average. This area is the 2D version to the 1D interval
[k , k ] shown above. The dark black point represents the center of
problem landscape.
4 In general, x ∈ [l, m],  with x̆ being in the lower or upper half of the search space,

depending on the location of x. For simplicity, generating x ∈ [l, c] is done.
5 The mean and median value of a uniform distribution on interval [a, b] is equal

to  (a + b)/2.
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Fig. 6. Illustration of the solution’s region (the volume surrounded by a dotted cube)
for  a 3-D search space, in which a random point is closer to the unknown solution
ig. 4. An illustration of the solution region (the area surrounded by a dotted square)
or a 2-D search space. A random point is closer to the unknown solution versus (x, x̆)
ithin this area.

olution than x or x̆.  The area of this region is equal to (a
√

2/4)2,
ince the edge length of the dotted square in Fig. 4 is (a

√
2/4). The

robability of the unknown solution falling into this region would
herefore be equal to

((a/4) ×
√

2)2

a2
. (13)

Further, two possible types of opposite points exist, as shown in
ig. 5.

So, we have

r = 2 × ((a/4) ×
√

2)2

a2
= 0.25, (14)

nd again, px = 0.375, and px̆ = 0.375.

.1.3. Three-dimensional space
This case again is very similar to the two previous ones, see Fig. 6.

his time we have eight center points (four diameters and so three
ifferent pairs of opposites, resulting in four situations, see Fig. 7).
ow, we calculate the volume shown by the dotted cube in a similar
anner as above. This results in

r = 4 × ((a/4) ×
√

2)3

a3
= 0.25, (15)

here the factor 4 represents the number of situations. Thus,
x = 0.375 and px̆ = 0.375.
.2. The proof

Our proof will extend the above examples to show that in gen-
ral, the probability of a paired-random guessing strategy being

Fig. 5. Illustration of the two possible situations for a 2-D search s
than x and x̆.

superior to the opposite strategy is constant and equal to 0.25. First,
we determine the volume of an inner hypercube, representing the
region where random guesses are closer to an optimal solution, on
average. Then, we  integrate the number of opposite guess pairs to
arrive at the solution.

Theorem 6. Let HN
o be an N > 0 dimensional hypercube with edge

lengths Lo > 0. Moreover, let HN
i

be an inscribed hypercube having a
common center to HN

o and with edge lengths

Li(N) =

⎧⎨
⎩

Lo

4
, if N = 1

Lo
√

2
4

, if N ≥ 2
.  (16)

Then, the volume of HN
i

is given by 1/2N+1. When considering opposites

(X, X̆), the probability p
R

will then be constant and equal to 0.25.

Proof. The outer hypercube HN
o will have volume Vo(N)  = LN

o
(product of all edge lengths). Similarly, the inner hypercube HN

i
will have volume

( √ )N
Vi(N) = (Li(N))N = Lo 2
4

= LN
o

2N+1
(17)

pace. The black points are selected points of each situation.
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Fig. 8. The mean distance to optimal of the paired random guessing (black) and
opposite strategy (gray). We fix the location of the optimal solution and generate
10,000 points and present the mean distance. This was repeated for optimal={0.0,
0.01, 0.02, . . .,  0.99, 1.00}.

Table 1
Comparison of two sets of results. As seen, the difference between the results of the
proposed proof and previous results (mathematical proof presented in [2]) is less
than  3%.
Fig. 7. Illustration of the four possible situations for 3-D sear

here the volume for the N = 1 case has been absorbed into Vi(N).
he ratio of inner to outer hypercube volume (after simplification)
s

Vi

Vo
= LN

o

2N+1

1

LN
o

= 1
2N+1

. (18)

Every N will have two opposite points, and thus one pair (X, X̆).
herefore, the total number of opposite pairings at a given dimen-
ion N will be 2N−1. Then, the probability the random guess is closer
s calculated as

R
= 2N−1

2N+1
= 1

4
. (19)

As a corollary, we now have in general that pR = 0.25, pX = 0.375
nd pX̆ = 0.375. This proves the opposite guessing strategy is more
esirable than simply paired random guessing from the perspec-
ive of Euclidean distance for a finite-dimensional problem having
olutions defined over a N-dimensional hypercube. Of course, the
ocation of the optimal value in the search space will introduce
ifferences from the theoretically expected values.

Fig. 8 presents the mean distance to an optimal solution in 1D.
he black line represents the random strategy and the gray line
orresponds to the opposition-based sampling approach, respec-
ively. To generate this figure we fix the optimal solution location
t {0.0, 0.01, 0.02, . . .,  0.99, 1.00}. At each fixed location 10,000 pairs
f samples are generated and the minimum distance to the opti-
um  is recorded. The opposite strategy is clearly more desirable,

nless the optimum is located near the center of the interval. A
ain source of variation from theoretical and experimental results
ill be related to the location of the optimal solution, as is further
iscussed below.

Results of previous mathematical proof [2],  and the current pro-
osed proof are summarized in Table 1. As seen, the difference

etween these results is less than 3%. The main reason for this
ifference is that the mentioned probabilities (px, px̆) have their
wn optimum values (0.375) when the reference center points
re located exactly at the center of intervals/regions, otherwise

px px̆ pr

Previous mathematical proof [2] 0.3613 0.3613 0.2773
Proposed proof 0.375 0.375 0.25
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Fig. 9. Illustration of the reason for the observed tolerance (for 2-D). Dashed areas
present the variation of the centers and the region because of the existence of non-
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Fig. 10. Probability of opposite (gray) or random (black) guess-based solution being
closer to the optimal s ∈ [0, 1]N . The number of dimensions N = 1, . . ., 25 is varied and
ero variances.

ny variation (standard deviation) affects their values (reduces
rom 0.375 to 0.3613), see Fig. 9 for the illustration. Dashed areas
resent the variation of the centers and the region because of the
xistence of non-zero variances for the average points (which is
2 = (b − a)2/12 for uniform distribution in each dimension).

As seen simply in all cases, on average, the candidate solutions
nd their opposites are located at the center of subregions. There-
ore, for each subregion, there is a representative which is in the
est possible position. The best is understood in a sense that it
as an overall minimum distance from all points in that subre-
ion. The search space can then divided into subregions (two in
-D, four in 2-D, eight in 3-D, and finally 2N in N dimensional
paces) and their centers are conquered by candidates and oppo-
ite candidates. This is why an opposite point has a higher chance
o be closer to solution than a pure random point. This behavior,
o some extent, is similar to that of stratified random sampling

ethods, e.g., Latin Hypercube Sampling, which often yields bet-
er efficiency than a pure random sampling. The mentioned proof
ffers us the intuitive explanation of the philosophy behind the
pposition.

. Computational analysis

We now perform various computational experiments and anal-
ses to confirm the above results, as well as to investigate
arious properties of the proposed system. First, we provide evi-
ence supporting the proof in Section 4.2. Then we examine the
est/worst and mean case scenarios from a distance-based per-
pective. Our last experiment considers purely random versus
aired opposite guesses in the context of an ensemble of
olutions.

.1. Confirmation of the main proof

First we confirm the theoretically derived probabilities dis-
ussed in the main theorem. Evidence is provided in Fig. 10,
here we see the constant probabilities of pR ≈ 0.25 and pX =

X̆ ≈ 0.375. The values were generated by selecting an optimal
alue s ∈ [0, 1]N and recording the frequencies associated with the
hree possible outcomes of guessing strategy. To gain an accu-
ate estimate 2000 pairs of uniform and opposite guesses are

enerated at each iteration for a single s. Due to the noise asso-
iated with placement of s, we average these results over 100
niform values. This process is repeated for N = 1, . . .,  25. Aside
rom having approximate values as those theoretically derived, the
the probabilities are estimated from 100 placements of s, each utilizing 2000 sample
pairs. The opposite strategy yields a more desirable result. Moreover, the values are
constant, as predicted.

behavior is constant which was also a requirement of the proposed
theorem.

5.2. Distance to optima

Fig. 8 highlights the mean distance to the optima for the 1D case.
When the optimal solution is near 0.25 and 0.75 the opposite-based
samples (OBS) are expected to show better performance compared
to when the location is near 0.5, when the random-based samples
(RBS) actually achieves a lower expected distance to the optimal
solution (DTO). In Fig. 11,  we  further examine these three situations.

In total, 10,000 paired samples are generated for each case, and
the resulting minimum distance to optima is recorded. The first row
corresponds to the optimal being located at 0.25, then 0.5 and 0.75
for the second and third rows, respectively. The first column dis-
plays a frequency plot of DTO for the paired-random strategy, and
the second column shows the corresponding figure for opposition-
based sampling. Finally, the cumulative distribution function for
the two methods is given in the third column. The dotted line
represents the opposition-based method and the solid line for the
random-based approach, respectively.

As can be expected, the range of possible DTO values is greater
for RBS than for OBS. Moreover, the distribution of OBS is essen-
tially uniform over the smaller range whereas the RBS do not.
The associated cumulative distribution plots capture this behavior.
OBS show a linear increase in probability whereas the RBS exhibit
a nonlinear increase. These distributions highlight the observed
experimental results in the best and worst case situations for
OBS.

5.2.1. Increasing ensemble size
Many search heuristics utilize populations, or ensembles. In this

experiment, we  focus on the performance of OBS  and RBS as the
number of sample pairs increases. Intuitively, greedy selection of

only the best solution in an ensemble should rapidly yield similar
results over both strategies. That is,

lim
n→∞

min(X, X̆) = min(X, Y) (20)
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Fig. 11. Frequency plots for RBS (first column) and OBS (second column) are given for optimal solution location at 0.25 (first row), 0.5 (second row) and 0.75 (third row). The
third  column presents the cumulative distribution of these results. The results are obtained over 10,000 samples per optimal solution location.
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increase for small sample sizes, however the value stabilizes for
both strategies. The lower standard deviation for OBS  indicates a
higher degree of reliability in the outcomes.
or n > 0 sample pairs, where it is implied that X, X̆, Y are sets of n
amples over some N-dimensional problem. In practice, the num-
er of samples required to achieve nearly identical minimum DTO is
ery small (as seen below in Fig. 12). However, in most ensemble-
ased approaches the minimum itself is not necessarily the best
stimate of ensemble quality (i.e., the ensemble mean distance to
ptima may  be of more importance).
Fig. 12 presents results that examine properties of the ensemble.
n all cases sample sizes of 1, . . .,  50 are considered and val-
es are estimated over 5000 trials where the optima is randomly
eassigned at each trial. The lower left plot displays the average
distance6 of samples in the ensemble to the optimal location. These
values are approximately constant and equal to about 0.20 for RBS
and 0.16 for OBS. The standard deviation about the mean for each
strategy is shown in the upper right plot of this figure. A sharp
6 It is not the average minimum distance to the optimal.
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nsemble DTO is also given (upper right). In all cases the RBS is represented by the 

The maximum DTO is also recorded and shown in the lower
ight plot of Fig. 12.  The mean maximum distance for OBS is rel-
tively constant and equal to about 0.3 after ensemble size 10.
owever, when utilizing RBS the mean maximum DTO does not

how a limiting behavior over this sample size and is nearly twice
s large as when using OBS. When using an ensemble it is important
o efficiently search in the local area7 of the optimal solution and
herefore these larger distances when using RBS are not desirable.

Fig. 13 compares the probability of the ensemble mean to be
loser to the optimal solution for 1D problems. The ensemble size
s varied between 1, . . .,  50 where the experimental design is as uti-
ized above. The solid gray line corresponds to the situation where
BS < RBS, the black line represents OBS > RBS and the dashed gray

ine is used to show OBS = RBS, respectively. As would be expected,
he probability OBS = RBS quickly reduces to 0 as the ensemble size
ncreases. This reduction initially causes a small increase in prob-
bility for RBS. When the probability RBS = OBS declines to 0, the
robability Pr(OBS > RBS) also continues to reduce. The Pr(OBS <
BS) consistently increases as the ensemble/sample size increases.

hese probabilities seem to converge at approximately Pr(OBS <
BS) = 0.8 and Pr(OBS > RBS) = 0.2.

7 Recall, we  are not considering the evaluation of a solution.
line and OBS with the gray line.

6. Discussion

To this point evidence supporting the utility of OBS has been
provided using a purely distance-based argument. The main proof
demonstrates that under a uniformly distributed solution assump-
tion, OBS is more likely to yield a guess near the optimal solution
than a uniformly chosen paired sample. However, in practise
a measure of distance to the optimal in representation space
may  not be possible to compute due to lack of information
about the location of the optimal solution. The choice of algo-
rithm A  and parameterization will thus affect the usefulness of
OBS.

The other main factors influencing the usefulness of an OBS-
based approach are the structure of the search-evaluation space
L as well as the definition of opposite employed O.  Indeed it may
be possible that OBS could yield poorer performance than alterna-
tive sampling strategies (even uniform-based sampling). Without
loss of generality the following will assume a maximization prob-
lem. It is reasonable to believe that one could be confident of an
improvement using OBS for f : R

n 
→ R  if,
Pr(max(f (x1), . . . , f (xn/2), f (x̆1), . . . , f (x̆n/2))

> max(f (x1), . . . , f (xn))) > 0.5. (21)
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Fig. 13. The probability of pR , pX , pX̆ having closest mean distance to a random
optima given an ensemble of certain sample size. The dashed gray line represents
the  situation where OB = RBS, the black line corresponds to RBS being closer than
OBS and the solid gray depicts the case where OBS is closer than RBS. OBS shows
a
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d

n  increase in probability up to ensemble size of 50 samples whereas RBS slightly
ncreases for small sample sizes, then decreases to approximately 0.20. This evidence
trongly supports the use of OBS.

ssuming (21) is satisfied, this implies that

E

⎡
⎣max(f (x1), . . . , f (xn/2), f (x̆1), . . . , f (x̆n/2))︸  ︷︷  ︸

OBS

⎤
⎦

⎡
⎢

⎤
⎥

> E⎢⎣max(f (x1), . . . , f (xn))︸  ︷︷  ︸
ALT

⎥⎦ , (22)

where OBS corresponds to the opposition-based sampling method

ig. 14. Example evaluation functions when considering independent uniform sampling 

epicts the non-symmetric Matlab humps function.
mputing 12 (2012) 2828–2839 2837

and ALT represents any alternative approach, respectively. We  can
explicitly state the dependence on solution landscape (L), defini-
tion of opposite (O) and algorithm (A),

E[OBS|L, O, A] > E[ALT|L, O, A]. (23)

Further analysis of L,  O, A and their impact on solution qual-
ity and convergence rates are underway. However, we provide the
following examples to highlight when and under what circum-
stances OBS may  yield benefits and when it may  be detrimental,
with respect to L.

It  is important to realize using OBS implies a transformation
of the evaluation function w.r.t. the definition of opposite. This is
because OBS is a (static) dependent sampling approach whereby
one returns the most desirable evaluation between a pair of guesses
that have a constant functional relationship. That is, given a guess
we will always compute the same opposite for it and the most desir-
able evaluation between the two will be retained, i.e., we should
always have f (x) = f (x̆) ≡ max(f (x), f (x̆)).

6.1. Example 1: symmetric evaluation function

Assume the evaluation function is symmetric about zero. For
instance, consider the 1-dimensional Gaussian function (Fig. 14(a))

f (x) = 1

�
√

2�
e−(x−�)/�)2

. (24)

Using Definition 1, f (x) = max(f (x), f (x̆)), for x, x̆ ∈ R. In this partic-
ular scenario, f (x) = f (x̆). Consider a uniform-sampling alternative
with paired samples (x, y), for x /= y and f(x) /= f(y). Then, it fol-
lows that the expected value of the joint distribution of possible
evaluations under each sampling scheme will be

EALT [f (x)] > EOBS[f (x)] (25)

for x the vector of samples. Thus, we  would not expect using OBS

will yield any benefits over uniform sampling in this situation since
both samples (x, x̆) are identical. For any alternative methods, two
random samples (x, y) will not likely be equal and the maximum of
these values is taken as the sample.

versus OBS dependent sampling. (a) shows a symmetric Gaussian function and (b)
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.2. Example 2: non-symmetric evaluation function

Let us now consider the non-symmetric “humps” function

 (x) = 1

(x − 0.3)2 + 0.01
+ 1

(x − 0.9)2 + 0.04
− 6. (26)

his function is plotted in Fig. 14(b) and shown as the solid black
ine. This graph represents the evaluations being sampled from
nder the alternative sampling scheme. We  will use ALT as uni-
orm sampling, as above. The gray dashed line in the same plot
ives the result8 of considering OBS and under the assumption of a
aximization problem.9 Clearly, the expected value of the joint dis-

ribution over function evaluations is higher for the OBS approach,
.e.,

ALT [f (x)] < EOBS[f (x)] (27)

dditionally, in this case under the OBS scheme we  have a lower
ariance than using uniform sampling and thus yielding a higher
olution reliability. Therefore although OBS is a generally appli-
able method, it is useful only when the solution landscape well
orresponds to the definition of opposition and the optimization
lgorithm is suitable designed.

. Conclusion and future work

This paper reviews the application and existence of the oppo-
ition concept in the real-world, and also approaches that have
imed to employ these principles in soft computing methodolo-
ies. We  mathematically and experimentally examine the intuition
ehind opposition-based sampling from the viewpoint of distance-
o-optimal solution in a given search space. Our main theorem
alculates the probability of opposite versus random paired sam-
ling and shows that the distance to an unknown solution is lower
nder the OBS approach. Experiments confirm the main theorem
tatement by varying problem dimensionality, solution location
nd ensemble size of the sample. We  also discuss the practical-
ty of this result and provide two examples which highlight when
BS may  be useful or detrimental (vs. uniform sampling).

In this paper, we assume that the algorithm being employed is
ble to utilize the distance-to-optimal solution information. How-
ver, in practise information may  not be accessible. We  provide
xamples of symmetric and non-symmetric evaluation functions to
ive an idea of expected behavior without regard to a specific opti-
ization approach. These results indicate the practitioner should

se prior knowledge or intuition about the evaluation function
hen considering OBS. Further analysis into this aspect of the prob-

em are underway as are developing adaptive methods based on
pproximated shape of the search-evaluation space L.

To date, our understanding of OBS is very limited. Future
ndeavors will concentrate on fully exploring the influencing
actors of evaluation-search space, algorithm and definition of
pposite being employed. A comprehensive and mathematical
nderstanding of under what circumstances OBS is beneficial
and/or detrimental) is required. One could additionally formulate
he decision of best opposite function as the one that maximizes
he difference between the left and right hand sides of Eq. (23).

ther approaches include self-adaptive algorithms that incorpo-

ate acquired knowledge of the search-evaluation space. Indeed,
here are numerous interesting venues for future work.

8 Recall, f (x) = max(f (x), f (x̆)).
9 For minimization, we  simply allow f (x) = min(f (x), f (x̆).
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