
Proceedings of the ASME 2010 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2010
August 15-18, 2010, Montreal, Quebec, Canada

DETC2010-28355

CONSTRAINT IMPORTANCE MODE PURSUING SAMPLING FOR CONTINUOUS
GLOBAL OPTIMIZATION

Moslem Kazemi ∗
School of Engineering Science

Simon Fraser University
Burnaby, BC Canada

E-mail: moslemk@cs.sfu.ca

G. Gary Wang
School of Engineering Science

Simon Fraser University
Burnaby, BC Canada

E-mail: gary wang@sfu.ca

Shahryar Rahnamayan
Faculty of Engineering and Applied Science
University of Ontario Institute of Technology

Oshawa, ON Canada
E-mail: Shahryar.Rahnamayan@uoit.ca

Kamal Gupta
School of Engineering Science

Simon Fraser University
Burnaby, BC Canada

E-mail: kamal@cs.sfu.ca

ABSTRACT
Many engineering design problems deal with global opti-

mization of constrained black-box problems which is usually
computation-intensive. Ref. [1] proposed a Mode-Pursuing Sam-
pling (MPS) method for global optimization based on a sampling
technique which systematically generates more sample points in
the neighborhood of the function mode while statistically cover-
ing the entire problem domain. In this paper, we propose a novel
and more efficient sampling technique which greatly enhances
the performance of the MPS method, especially in the presence
of expensive constraints. The effective sampling of the search
space is attained via biasing the sample points towards feasi-
ble regions and being away from the forbidden regions. This
is achieved by utilizing the incrementally obtained information
about the constraints, hence, it is called Constraint-importance
Mode Pursuing Sampling (CiMPS). According to intensive com-
parisons and experimental verifications, the new sampling tech-
nique is found to be more efficient in solving constrained opti-
mization problems compared to the original MPS method. To the
best of our knowledge, this is the first metamodel-based global
optimization method that directly aims at reducing the number of
function evaluations for both expensive objective functions and
constraints.

∗Address all correspondence to this author.

1 Introduction

Due to the wide use of computation intensive tools in engi-
neering design, metamodeling has become a popular approach in
recent years [2, 3]. Most researchers use metamodels as a surro-
gate for the expensive computer model in the optimization, di-
rectly or adaptively, for the reduction of computational costs. In
these studies, the objective function of an optimization problem
is assumed to be expensive. The constraints, either box or more
complicated linear or nonlinear constraints, are usually assumed
to be cheap ([4, 5], to name a few). A cheap function is inter-
preted as having CPU time for one function evaluation at least an
order of magnitude lower than that for an expensive function. In
a real design practice, one will face situations in which the con-
straints can be computational expensive. For example, for vehi-
cle design, the objective may be to reduce the life-cycle costs and
one of the constraints is its crashworthiness. The crashworthiness
is likely evaluated through crash simulation, which is a widely
known computationally expensive process. It is therefore worth-
while to study metamodeling-based optimization techniques for
both expensive objective functions and constraints.

In the field of metamodeling-based design optimization,
there is little work on expensive constraints. Ref. [6] studied
constraint handling in the context of their Efficient Global Op-
timization (EGO) algorithm. The authors compared the penalty
method and the one that multiplies the expected improvement
(of the objective) by the probability that the point is feasible. It

1 Copyright c© 2010 by ASME

Proceedings of the ASME 2010 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2010
August 15-18, 2010, Montreal, Quebec, Canada

DETC2010-28355

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/23/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use

was found that these two methods have distinct merits, depend-
ing on how strictly the constraints need to be satisfied. The work
in [6] tried to avoid sampling in infeasible areas, which indirectly
reduces the computational costs for constraints. Refs. [7], [8],
and [9] used constraint programming with the assistance of meta-
modeling to reduce the search space. In these works, constraints
are either expensive or inexpensive; and the goal is to bring the
optimization into a confined smaller space. Constraint program-
ming, though promising, needs careful tuning and brings extra
difficulties to the designer [10]. In general the lack of study on
expensive constraints is perhaps due to the following reasons.
First, it is found that if constraints are also approximated by sur-
rogates, the obtained constrained optimum, which often rests on
the boundary of the feasible space, may be quite far from the ac-
tual optimum because of approximation errors in both constraint
and objective functions [11]. While there are still challenges to
build an accurate surrogate for the objective, the constraints are
then assumed inexpensive for convenience as well as for a bet-
ter paper focus. Secondly, it is also perhaps because researchers
overlooked the challenge of expensive constraints, as the authors
did before.

For constrained optimization in general, there are classic
methods such as Lagrange multipliers, quadratic programming,
steepest descent method, and penalty methods [12]. When the
functions (both objective and constraints) are black-box, many of
the classic methods are not applicable. Ref. [13] gave a compre-
hensive review of constraint handling techniques in evolutionary
computing, in which the functions are also black-box. Besides
many algorithm specific methods such as various chromosome
representations and operators, the penalty methods are of spe-
cial interests to the authors. They reviewed six types of penalty
methods, i.e., static penalty, dynamic penalty, annealing penalty,
adaptive penalty, co-evolutionary penalty, and death penalty. A
recent article [14] has also been devoted to constraint handling
for evolutionary optimization.

There is also a large quantity of literatures on reliability-
based design optimization (RBDO) when the uncertainties of
variables and probabilistic constraints are taken into consider-
ation. In this area, researchers in recent years started to con-
sider constraints, or performance functions, as being expensive.
A recent assemble of papers in this area is in [15]. There exist
distinctive differences in theory and methodology on constraint
handling between RBDO and deterministic optimization which
is the focus of [15]. Therefore we refrain from delving deep into
this area.

The present work has been motivated from the application of
the Mode Pursing Sampling (MPS) method, a global optimiza-
tion method originally developed in [1] for continuous variable
optimization problems which later on was extended to mixed
variable problems [16]. Through testing its performance [17],
it is found that MPS took an excessive amount of CPU time for
constraint handling, even for inexpensive constraints. This in
fact brings down its performance for relatively high dimensional
black-box problems (n > 10; n is the number of design variables).
Later on, the MPS method was applied for crashworthiness op-
timization where constraints were expensive; and the need for a
technique to handle expensive constraint arose. This work thus

aims to develop a constraint handling approach for optimization
problems involving both expensive objective and constraint func-
tions. As discussed before, directly using surrogates for both
types of functions in optimization could yield erroneous results
due to the metamodeling errors. New techniques are therefore
needed. This work is based on the framework of the MPS method
which does not rely on accurate metamodels but rather use meta-
models as a sampling guide.

In Section 2, MPS will be briefly reviewed and its constraint
handling strategy is explained. The proposed approach will be
described in Section 3. Experimental verifications and compari-
son analysis will be presented in Section 4, and finally, the work
will be concluded in Section 5.

2 Mode Pursuing Sampling Method: Review and Is-
sues
The Mode Pursuing Sampling method [1] integrates the

technique of meta-modeling and a novel discriminative sampling
method proposed in [18] in an iterative scheme for global opti-
mization of black-box problems. It generates more sample points
in the neighborhood of the function mode and fewer points in
other areas as guided by a special sampling guidance function.
Moreover, by continuous sampling in the global search space it
avoids trapping in local minima.

The MPS method for minimizing a black-box function f :
Rn → R is given as a pseudo-code in Fig. 1. It takes the set of
constraints G f = {gk(x) ≤ 0|k = 1, . . . ,K} and the problem do-
main D f ⊂Rn as inputs and returns the global minimum of f (x)
as output in case of success. The algorithm can be summerized
in four steps as follow:

Step 1 (Initial sampling, lines 2 and 3): A set of m
sample points X = {xi ∈ D f |gk(xi) ≤ 0,k = 1, . . . ,K; i =
1, . . . ,m} is generated randomly at line 2 using function
SampleWithConstraints() in the feasible region of
the problem domain D f ⊂ Rn where m is an arbitrary inte-
ger that usually increases as the dimension of the problem
domain, n, increases. These m points are called expensive
points since their function values are evaluated by the black-
box function f (x) at line 3.
Step 2 (Function approximation, lines 6-9): A piecewise-
linear spline f̂ (x) is then fitted (line 6) to the set of expensive
points X as a meta-model of the actual black-box function:

f̂ (x) =
m

∑
i=1

αi‖x− xi‖, (1)

such that f̂ (xi) = f (xi), for i = 1, . . . ,m, with constant
αi. Then a sampling guidance function h(x) = c0 − f̂ (x)
is defined (line 7) where c0 is a constant such that c0 >
max(f̂ (x)). The guidance function can be viewed as a prob-
ability density function (up to a normalizing constant) whose
modes are located at those xi’s where the function values are
the lowest among f (xi)’s. N (usually large) number of valid

2 Copyright c© 2010 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/23/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use

input : f (x) black box function; G f
= {gk(x)≤ 0|k = 1, . . . ,K} set of constraints; D f
⊂ Rn problem domain

output: xmin global minimum of f (x), or null in case of
failure

1 begin
2 X ← SampleWithConstraints(m, G f , D f);
3 V ← Evaluate(X, f);
4 iter = 1;
5 while iter ≤ MAX ITERATION do
6 f̂ ← LinearSpline(X, V);
7 h← c0− f̂ ; // c0 > Max(f̂)

8 XN ← SampleWithConstraints(N, G f ,
D f);

9 VN ← Evaluate(XN , h) ;

10 xmod ← Mode(XN , VN);
11 Xm ← SampleTowardMode(m, XN , VN);
12 Vm ← Evaluate(Xm, f) ;

13 X ← X ∪Xm;
14 V ←V ∪Vm;
15 q← (n+1)(n+2)/2+1;
16 [Xq,Vq]← NeighborSamples(q, xmod , X,

V);

17 if QuadraticRegression(Xq, Vq) is
accurate then

// Perform local optimization
18 [xmin, vmin] ← FMinCon(f , xmod , G f);
19 if xmin ∈ HyperCube(Xq) then
20 Return xmin ; // Minimum found
21 end
22 end
23 X ← X ∪ xmin;
24 V ←V ∪ vmin;
25 iter = iter +1;
26 end
27 Return null ; // Minimum not found
28 end

FIGURE 1: The Mode Pursuing Sampling (MPS) optimization
algorithm

sample points are then randomly generated within the feasi-
ble region of the problem domain again by calling function
SampleWithConstraints() at line 8. These points
are called cheap points since their function values are eval-
uated by the linear guidance function h(x), not the objective
function, hence, their function values will be referred as ap-
proximation values1.
Step 3 (Mode pursuing sampling, lines 10-12): A discrimi-
native sampling technique (see [18]) is then employed (func-

1Through out this paper, cheap samples refer to those points evaluated by a
spline approximation of the objective function, while expensive samples denote
the points evaluated by the objective function itself which is usually more time
consuming.

tion SampleTowardMode() at line 11) to draw another
set of m sample points from the set of the cheap points ob-
tained in Step 2 according to the h(x) (please see [1] for im-
plementation details). By construction these sample points
have the tendency to concentrate about the maximum (or
mode) of h(x), which corresponds to the minimum of f̂ (x).
Step 4 (Quadratic regression and local optimization, lines
15-22): The fourth step involves a quadratic regression in a
sub-area around the current minimum of f̂ (x) (or mode of
h(x)) according to the discriminative sampling in Step 3. If
the approximation in the sub-area is sufficiently accurate, lo-
cal optimization is performed in this sub-area to obtain the
minimum, xmin. The xmin is returned as the global minimum
of f (x) if it is located inside the identified sub-area around
the mode of h(x). Otherwise, it is added to the set of expen-
sive points and the algorithm restart from Step 2. The reader
is referred to [1] for more details on implementation of the
above steps.

In short, the MPS is an algorithm which uses discrimina-
tive sampling as its engine and has an intelligent mechanism to
use the information from past iterations to lead the search toward
the global optimal. At each iteration of the MPS two types of
approximations are used: (1) approximation of the entire func-
tion by fitting the meta-model given in Eqn. (1) to all expensive
points (line 6), and (2) quadratic regression around the attractive
sub-areas (line 17). The first approximation uses a piecewise-
linear spline as the meta-model because of its simplicity. One
should note that the accuracy of the meta-model is not very crit-
ical here comparing to the cases where meta-models are used as
surrogates since it is only used to guide the search toward the
function mode. Nonetheless, the MPS method does not dictate
the exclusive use of the linear functions, and other types of meta-
models can be applied in lieu of the linear model. The accuracy
of the quadratic regression (second approximation) around the
attractive areas is increased at each iteration due to the discrim-
inative sampling which generates more and more sample points
around attractive regions.

2.1 MPS Limitations in Constrained Optimization
Problems

Several simulations and design examples have shown the ef-
fectiveness, robustness, and applicability of the MPS method in
both continuous [1] and discontinuous [16] domains. Some of
the limitations of the MPS method were discussed in [1] and a
study was conducted in [17] comparing the performance of the
MPS with traditional global optimization methods such as the
Genetic Algorithms in solving global optimization of both ex-
pensive and inexpensive objective functions.

One of the main issues which, unfortunately, has been
overlooked is the performance of the MPS method in pres-
ence of expensive constraints. In the examples provided in the
early works mentioned above the cost of checking the con-
straints when generating random sample points (specifically in
function SampleWithConstraints() called at line 8 of
Fig. 1) is not considered in the total cost of the optimiza-
tion. Due to the large number of constraint checks that the

3 Copyright c© 2010 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/23/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use

input : n, number of samples to generate; G , set of
constraints; D , problem domain

output: X , set of n valid samples

1 begin
2 X = {};
3 i = 1;
4 while i <= n do
5 x← rand(D);
6 if CheckForConstraints(x, G) ==

success then
7 X ← X ∪{x};
8 i = i+1;
9 end

10 end
11 Return X ;
12 end

FIGURE 2: Function SampleWithConstraints(n, C , D)

MPS method relies on, this cost could be a determinant factor
for constrained optimization problems especially when the de-
sign problem consists of expensive constraints. This can be ex-
plained by taking a closer look at the strategy that MPS algo-
rithm utilizes to generate sample points, in particular in function
SampleWithConstraints() (given in Fig. 2) in which
a large number of cheap random points need to be generated
within the feasible region of the problem domain. Referring
to the pseudo-code in Fig. 2, to make sure that each sample
point falls into the feasible region of the problem domain, it
is checked against the set of all the constraints using function
CheckForConstraints() at line 6). If the sample point
satisfies all the constraints then it is added to the set of valid
samples. Otherwise, it is discarded and a new sample is ran-
domly generated and checked for the constraints. The generation
of random samples continues based on the above scheme until
the required number of valid sample points are obtained.

Apparently, in constrained optimization problems the above
strategy might result in a large number of constraint checks con-
sidering the relative size of the forbidden and feasible regions.
Moreover, in the above strategy, the invalid samples are dis-
carded and the information obtained through the constraint check
is not used in the overall MPS optimization algorithm.

To overcome the above shortcomings of the MPS technique,
we present a novel sampling technique which systematically bi-
ases the generation of sample points towards feasible regions of
the problem domain using the information which is incremen-
tally obtained about the constraints, hence, the name Constraint-
importance Mode Pursuing Sampling (CiMPS). The proposed
sampling technique results in a substantially less number of con-
straint checks and, hence, superior performance in solving con-
strained optimization problems comparing to the original MPS
method. One should note that in the CiMPS method, the gener-
ation of sample points is still biased towards the function mode
similar to the original MPS technique while we use the infor-
mation obtained through invalid samples to guide the sampling
towards feasible regions away from constraints. The proposed

sampling strategy is explained in more details in the next sec-
tion.

3 Constraint-importance Mode Pursuing Sampling
(CiMPS)
The crux of our proposed sampling method, called

Constraint-importance Mode Pursuing Sampling (CiMPS), is to
utilize the information obtained about the constrains to bias the
generation of samples towards feasible region of the problem do-
main, hence, resulting in a more efficient sampling of the space
and substantially less number of constraint checks comparing to
the mode pursuing sampling technique proposed in [1]. It is
worthwhile to mention that the CiMPS technique still benefits
from the advantages of original MPS technique by biasing the
samples towards the mode of the objective function and, hence,
the number of objective function evaluation is kept relatively low
due to fast convergence of the optimization towards the mode of
the function. Thus, in summary the CiMPS method provides ef-
ficient sampling of the problem domain by accounting for the in-
formation incrementally obtained about both the objective func-
tion and constraints. This strategy is shown to result in a sub-
stantially low number of both function evaluations and constraint
checks as we explain next.

The CiMPS algorithm (given as a pseudo-code in Fig. 3)
generally follows the four steps similar to the MPS algorithm
explained in Section 2. Similar to the original MPS opti-
mization method, to bias the sample points towards the mode
of the objective function, the sampling technique proposed in
[18] is employed as the core of the discriminative sampling in
CiMPS method (via function SampleTowardMode() at line
11) where a set of m sample points is systematically selected
from a large number of cheap points biased toward the function
mode according to their guidance function values.

The CiMPS method incorporates two important modifica-
tions to improve the performance of the MPS method in the pres-
ence of expensive constraints, specifically at lines 8 and 12: the
former relaxes the constraint check criterion when generating a
large number of cheap sample points, hence, it results in substan-
tially less number of constraint checks overall. The latter eval-
uates the function values of expensive sample points according
to the result of constraint check for each sample to incorporate
the information obtained about the constraints into the objective
function approximation. This yields a more efficient sampling
of the search space. These two improvements are detailed in the
following sections.

3.1 Relaxing Constraint Checks
As we mentioned earlier in Section 2, in the MPS method

a large number of feasible cheap sample points are generated at
line 8 by calling function SampleWithConstraints() in
which each sample point is checked against all the constraints
and in case of no constraint violation, it is added to the set of
cheap sample points. In the CiMPS algorithm, this condition is
relaxed at line 8 by calling function Sample() in which the
cheap sample points are generated randomly within the prob-

4 Copyright c© 2010 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/23/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use

input : f (x) black box function; G f
= {gk(x)≤ 0|k = 1, . . . ,q} set of constraints; D f
⊂ Rn problem domain

output: xmin global minimum of f (x), or null in case of
failure

1 begin
2 X ← SampleWithConstraints(m, G f , D f);
3 V ← Evaluate(X, f);
4 iter = 1;
5 while iter ≤ MAX ITERATION do
6 f̂ ← LinearSpline(X, V);
7 h← c0− f̂ ; // c0 > Max(f̂)

8 XN ← Sample(N, D f);
9 VN ← Evaluate(XN , h);

10 xmod ← Mode(XN , VN);
11 Xm ← SampleTowardMode(m, XN , VN);
12 Vm ← EvaluateWithConstraints(m, Xm,

f , G f);

13 X ← X ∪Xm;
14 V ←V ∪Vm;
15 q← (n+1)(n+2)/2+1;
16 [Xq,Vq]← NeighborSamples(q, xmod , X,

V);

17 if QuadraticRegression(Xq, Vq) is
accurate then

// Perform local optimization
18 [xmin, vmin] ← FMinCon(f , xmod , G f);
19 if xmin ∈ hyper cube(Xq) then
20 Return xmin ; // Minimum found
21 end
22 end
23 X ← X ∪ xmin;
24 V ←V ∪ vmin;
25 iter = iter +1;
26 end
27 Return null ; // Minimum not found
28 end

FIGURE 3: Constraint-importance Mode Pursuing Sampling
(CiMPS) algorithm

lem domain without being checked against the constraints (see
pseudo-code in Fig. 4). Hence, some of the samples might fall
into forbidden regions defined by the constraints. Please note that
the objective function may be undefined in these regions, how-
ever, the cheap sample points are supposed to be evaluated by the
guidance function h(x) (line 9, Fig. 3) which is a linear spline ap-
proximation of the objective function and is defined everywhere
in the problem domain even in the forbidden regions. Nonethe-
less, the function values obtained for these infeasible samples do
not properly represent the underlying objective function. If they
are not treated appropriately they would result in improper sam-
pling of the forbidden regions and eventually yields an invalid
global minimum. As we see in the next section, in our proposed

input : n, number of samples to generate; D , problem
domain

output: X , set of n valid samples

1 begin
2 X = {};
3 for i = 1 to n do
4 x← rand(D);
5 X ← X ∪{x};
6 end
7 Return X ;
8 end

FIGURE 4: Function Sample(n, D)

sampling technique the information obtained through these in-
valid samples are utilized to bias the sampling away from the
constraints and towards the feasible regions of the problem do-
main.

The set of cheap sample points generated as explained above
is then sampled by function SampleTowardMode() at line
11 using the sampling technique in [18] to obtain a set of m ex-
pensive sample points which are biased towards the mode of the
guidance function. This step follows the implementation of the
MPS technique proposed in [1].

3.2 Constraint-importance Sampling
The expensive sample points obtained using function

SampleTowardMode() are used next to perform a quadratic
regression (line 22) around the function mode, and later on are
added to the set of expensive sample points (lines 23 and 24) for
further improvement of the spline approximation of the black-
box function at line 6. Therefore, to provide more accurate ap-
proximations, these samples should be evaluated by the objective
function to obtain their exact function values. However, as men-
tioned above, some of these samples might fall into forbidden
regions where the objective function may be undefined.

Therefore, these sample points are especially treated at line
12 by calling function EvaluateWithConstraints() in
which each sample is first checked against all the constraints (see
pseudo-code in Fig. 5). If a sample point satisfies all constraints
then its actual function value is evaluated by the objective func-
tion. Otherwise, an appropriate penalty value is assigned as its
function value (see line 7, Fig. 5). Two schemes are proposed to
choose the appropriate penalty for invalid sample points:

Fixed Penalty If the user has some information regarding
the maximum value that the objective function can achieve
over the problem domain, then a value equal to or greater
than the maximum can be selected as a fixed penalty for all
infeasible samples. This information can be obtained by the
user at the beginning by examining the objective function.
Variable Penalty The second scheme consists of iteratively
modifying the penalty value as follows. At each iteration,
the penalty value would be set equal to or greater than the
maximum function value of the valid samples which have
been already identified up to the current iteration. This ap-

5 Copyright c© 2010 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/23/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use

input : n, number of points to be evaluated; X , set of n
sample points to be evaluated; f , the objective
function to evaluate X ; G , set of constraints

output: V , value functions of points in X , i.e.
V = {vi = f (xi)|xi ∈ X , i = 1, . . . ,n}

1 begin
2 V = {};
3 foreach x in the set X do
4 if CheckForConstraints(x, G) ==

success then
5 v← f (x);
6 else
7 v← A PENALTY VALUE;
8 end
9 V ←V ∪{v};

10 end
11 Return V ;
12 end

FIGURE 5: Function EvaluateWithConstraints(n, X , f ,
C)

proach is desirable and less demanding since usually global
information about the black-box function is not available be-
forehand and the fixed penalty scheme may not be applica-
ble.

Interestingly, assigning an appropriate penalty obtained using
either of above two schemes imposes a large function value
to the approximated objective function f̂ (x) in forbidden re-
gions represented by infeasible samples. This in turn results
in low values for the guidance function h(x) (in forbidden
region), hence, the generation of sample points in function
SampleTowardMode() will be biased away from the for-
bidden regions because, according to the sampling technique in
[18], function SampleTowardMode() generates more sample
points in the neighborhood of the function mode (regions with
high fitness values) and generates less sample points in areas with
low fitness.

4 Simulation Results and Design Examples
In this section, the effectiveness of the CiMPS method is

evaluated on a number of benchmark functions (Section 4.1) and
design examples (Section 4.2), and its performance is compared
with the original MPS method and some previous works.

4.1 Benchmark Functions
The CiMPS method has been tested and compared with the

orginal MPS method on a number of constrained optimization
benchmarks, including:

QF A simple quadratic function fQF : [−3,3]2 → R

fQF(x) = fQF(x1,x2) = (x1 +1)2 +(x2−1)2 (2)

subject to

g1(x) = 1− (x1−1)2− (x2−1)2 ≤ 0, (3)
g2(x) = 2.25− x2

1− (x2 +1.5)2 ≤ 0,

with a global mimimum function value of min fQF = 0.0 at
xmin = (−1,1).

SC Six-hump camel back function fSC : [−2,2]2 → R

fSC(x) = fSC(x1,x2) = 4x2
1−

21
10

x4
1 +

1
3

x6
1 +x1x2−4x2

2 +4x4
2

(4)
subject to

g1(x) = 0.25− (x1−1)2− (x2−1)2 ≤ 0, (5)
g2(x) = 0.25− (x1−1)2− (x2 +1)2 ≤ 0,

g3(x) = 0.25− (x1 +1)2− (x2−1)2 ≤ 0,

g4(x) = 1.0− (x1 +1)2− (x2 +1)2 ≤ 0.

The fSC(x) has six local minima of which two (at x =
(−0.090,0.713) and (−0.090,−0.713)) are global minima
with equal function value of min fSC(x) =−1.032.

GP Goldstien-Price function fGP : [−2,2]2 → R

fGP(x) = fGP(x1,x2) =(
1+(x1 + x2 +1)2(19−14x1 +3x2

1−14x2 +6x1x2 +3x2
2)

)
(
30+(2x1−3x2)2(18−32x1 +12x2

1 +48x2−36x1x2 +27x2
2)

)

(6)

subject to

g1(x) = 0.52− (x1−1)2− (x2−1)2 ≤ 0, (7)
g2(x) = 0.52− (x1−1)2− (x2 +1)2 ≤ 0,

g3(x) = 0.52− (x1 +1)2− (x2−1)2 ≤ 0,

g4(x) = 0.52− (x1 +1)2− (x2 +1)2 ≤ 0,

with a global minimum function value of min fGP(x) = 3.0
at xmin = (0,−1).

HN Hartman function fHN : [0,1]6 → R

fHN(x) =−
4

∑
i=1

ciexp
[−

n

∑
j=1

αi j(x j− pi j)2] (8)

where αi j and pi j can be found in [1], subject to

g1(x) = x1−0.5≤ 0, (9)
g2(x) = x2−0.5≤ 0,

with a global minimum function value of min fHN(x) =
−3.322.

6 Copyright c© 2010 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/23/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use

D

d

LoadLoad

FIGURE 6: A tension/compression coil spring

F16 A function of 16 variables fF16 : [−1,0]16 → R

fF16(x) =
16

∑
i=1

16

∑
j=1

ai j(x2
i + xi +1)(x2

j + x j +1) (10)

where ai j for i, j = 1, . . . ,16 is given in [1], subject to

g1(x) = x1 +0.2≤ 0, (11)
g2(x) = x2 +0.2≤ 0,

g3(x) = x10 +0.2≤ 0,

g4(x) = x11 +0.1≤ 0,

with a global minimum function value of min fHN(x) =
25.875 at xmin = (−0.5,−0.5, . . . ,−0.5).

Information related to each of the above problems and the run
settings has been summarized in Tab. 1. For each problem, 30
runs have been carried out using the MPS and CiMPS methods
and their performances are compared based on two cost indica-
tors: (1) number of objective function evaluations (n f e), and (2)
number of constraint checks (ncc). Both CiMPS and MPS meth-
ods share the same run settings: N, the number of cheap points
generated at each iteration, the number of contours by which the
cheap points are grouped, and m the number of expensive sample
points generated at each iteration (the quadratic fitting accuracy
R2 is set to 0.999 for all test problems). For a detailed explana-
tion of these settings and their effects one can refer to [1].

The simulation results obtained using the MPS and CiMPS
methods for above problems are summarized in Tab. 2. As it is
shown, for all test examples, the number of constraint checks
(ncc) by the CiMPS method is significantly lower compared
to the corresponding number of constraint checks by the MPS
method. Moreover, except for QF, on all other functions CiMPS
performs better in term of n f e.

4.2 Design Examples with Expensive Constraints
Two well known engineering design problems are used to

evaluate the performance of the proposed method: (1) Minimiza-
tion of Weight of the Spring, and (2) Pressure Vessel Design.
Both are constrained optimization problems consisting several
expensive constraints. Each problem is described with its corre-
sponding constraints, bounds, and objective function in the fol-
lowing sections.

4.2.1 Minimization of Weight of the Spring This
problem has been used as a test benchmark in literature, e.g.

[12, 19–21]. In its standard form [12], it consists of designing
a tension/compression spring (shown in Fig. 6) to carry a given
axial load. The objective is to minimize the weight of the spring
fWS as

fWS(x1,x2,x3) = (x3 +2)x2x2
1 (12)

where x1 = d is the wire diameter, x2 = D is the mean coil di-
ameter, and x3 = N denotes number of active coils, subject to the
following constraints

g1(x) = 1.0− x3
2x3

71875x4
1
≤ 0 deflection constraint (13)

g2(x) =
x2(4x2− x1)

12566x3
1(x2− x1)

+
2.46

12566x2
1
−1.0≤ 0 stress constraint

g3(x) = 1.0− 140.54x1

x2
2x3

≤ 0 surge wave frequency constraint

g4(x) =
x2 + x1

1.5
−1.0≤ 0 outer diameter constraint

with the bounds 0.05 ≤ x1 ≤ 0.20, 0.25 ≤ x2 ≤ 1.30, and 2 ≤
x3 ≤ 15.

Table 3 summarizes and compares the results obtained by
applying both the MPS and CiMPS methods (30 runs for each).
The number of cheap points generated at each iteration is N =
100 and the number of contours used is 5 for all runs. As it can
be seen, the CiMPS method results in significantly lower num-
ber of constraint checks (ncc) and also less number of function
evaluations (n f e).

This problem has been solved by a number of researchers:
[12](a numerical technique called constraint correction at con-
stant cost (CCC)), [21] (a GA-based algorithm), [20] (IHS, an
improved variation of Harmony Search algorithm [22]), [19] (us-
ing eight numerical techniques with the best solution obtained
using M-4 method which is a variation of a Lagrange multipli-
ers code based on Powell’s algorithm [23]). The above solutions
are compared with the best solution found using our proposed
CiMPS technique and the original MPS method in Tab. 4. As
it can be seen, the solution obtained using our proposed CiMPS
method (and the MPS) is better than the ones obtained by other
techniques.

4.2.2 Pressure Vessel Design The second problem
is to minimize the total cost, including the cost of material, form-
ing and welding of a cylindrical vessel which is capped at both
ends by hemispherical heads as shown in Fig. 7.

The total cost fPV (x) is given as

fPV (x) = 0.6224x1x3x4 +1.7781x2x2
3 +3.1661x2

1x4 +19.84x2
1x3
(14)

where x1 = Ts is the thickness of the shell, x2 = Th is the thickness
of the head, x3 = R is the inner radius, and x4 = L is the length of

7 Copyright c© 2010 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/23/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use

TABLE 1: Summary information of the test problems and run settings: : N, the number of cheap points generated at each iteration, the
number of contours by which the cheap points are grouped, and m the number of expensive sample points generated at each iteration
(the quadratic fitting accuracy R2 is set to 0.999 for all test problems). For a detailed explanation of these settings and their effects one
can refer to [1].

Run settings

f (x) n Domain # constraints Global
minimum

N m # contours

QF 2 [−3.0,3.0]2 2 0.0 100 5 5

SC 2 [−2.0,2.0]2 4 -1.032 100 5 10

GP 2 [−2.0,2.0]2 4 3.0 100 5 20

HN 6 [0.0,1.0]6 2 -3.322 100 30 20

F16 16 [−1.0,0.0]16 4 25.875 500 155 20

TABLE 2: Simulation results obtained for the test problems using both the MPS and CiMPS methods: Minimum denotes the optimal
value found; n f e, # function evaluations, ncc, # constraint checks (var, variations, ave: average, med: median)

Minimum n f e ncc

f (x) Method var med ave med ave med

QF
MPS [0.000, 0.000] 0.000 17.1 16.5 336.6 309.0

CiMPS [0.000, 0.000] 0.000 23.5 23.5 85.4 72.0

SC
MPS [-1.032, -0.373] -1.031 94.2 78.0 3307.7 2694.0

CiMPS [-1.032, -1.003] -1.031 85.0 72.5 282.2 243.5

GP
MPS [3.000, 4.043] 3.001 304.7 287.5 4162.9 3836.0

CiMPS [3.000, 3.408] 3.001 267.4 231.0 485.8 356.5

HN
MPS [-3.319, -2.057] -3.291 704.5 719.0 24799.5 25398.0

CiMPS [-3.321, -2.787] -3.295 388.1 396.0 978.0 950.0

F16
MPS [25.876, 25.902] 25.880 333.2 222.0 4906.8 2413.5

CiMPS [25.876, 25.886] 25.878 291.9 245.0 665.6 622.5

Th

R

Ts

R

L

FIGURE 7: A Pressure Vessel

the cylindrical section, subject to the following six constraints

g1(x) = −x1 +0.0193x3 ≤ 0 (15)
g2(x) = −x2+0.00954x3 ≤ 0

g3(x) = −πx2
3x4− 4

3
πx3

3 +1296000≤ 0

g4(x) = x4−240≤ 0
g5(x) = 1.1− x1 ≤ 0
g6(x) = 0.6− x2 ≤ 0

with the bounds 1.0 ≤ x1 ≤ 1.375, 0.625 ≤ x2 ≤ 1.0, 25 ≤ x3 ≤
150, and 25≤ x3 ≤ 240

Table 5 summarizes and compares the results obtained by
applying both the MPS and CiMPS methods (30 runs for each).
The number of cheap points generated at each iteration is N =
200 and the number of contours used is 20 for all runs. As it
is seen, the CiMPS method results in significantly lower num-
ber of constraint checks (ncc) and also less number of function
evaluations (n f e). This problem has been solved by [24] using
a GA-based approach, by [25] using Harmony Search (HS) al-
gorithm [22], by [20] using IHS method, an improved variation
of the Harmony Search algorithm, and by [26] using branch and
bound method. The best solutions obtained using above tech-
niques are compared with the best solution found using our pro-
posed CiMPS technique and the original MPS method in Tab.
6. As it can be seen, the solution obtained using our proposed

8 Copyright c© 2010 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/23/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Administrator
Highlight

TABLE 3: Results obtained for the Minimization of Weight of the Spring problem using both the MPS and CiMPS methods: Minimum
denotes the optimal value found; n f e, # function evaluations, ncc, # constraint checks (var, variations, ave: average, med: median)

Minimum n f e ncc

Method var med ave med ave med

MPS [0.012664, 0.013000] 0.01268 32.9 29.0 20994.1 14847.5

CiMPS [0.012665, 0.013040] 0.01268 21.0 19.5 1910.6 1816.5

TABLE 4: Best solution obtained for the Minimization of Weight of the Spring problem using the CiMPS method compared with the
best solutions reported by other works

Method

Design CiMPS (this work) MPS [1] CCC [12] GA-based [21] M-4 [19] IHS [20]

x1 0.05156 0.05154 0.053396 0.051989 0.0500 0.05115438

x2 0.35363 0.35322 0.399180 0.363965 0.3176 0.34987116

x3 11.47221 11.49692 9.185400 10.890522 14.027 12.0764321

fWS(x) 0.012665 0.012664 0.012730 0.012681 0.01272 0.0126706

TABLE 5: Results obtained for the Pressure Vessel Design problem using both the MPS and CiMPS methods: Minimum denotes the
optimal value found; n f e, # function evaluations, ncc, # constraint checks (var, variations, ave: average, med: median)

Minimum n f e ncc

Method var med ave med ave med

MPS [7163.73957, 7163.73957] 7163.73957 62.4 61.0 4565.2 4351.0

CiMPS [7163.73957, 7163.73957] 7163.73957 37.4 37.0 335.6 332.5

TABLE 6: Best solution obtained for the Pressure Vessel Design problem using the CiMPS method compared with the best solutions
reported by other works

Method

Design CiMPS (this work) MPS [1] GA-based [24] HS [25] IHS [20] BB [26]

x1 1.10000 1.10000 1.125 1.125 1.125 1.125

x2 0.625 0.625 0.625 0.625 0.625 0.625

x3 56.99482 56.99482 58.1978 58.2789 58.29015 48.97

x4 51.00125 51.00125 44.2930 43.7549 43.69268 106.72

fPV (x) 7163.73957 7163.73957 7207.494 7198.433 7197.730 7980.894

CiMPS method (and the MPS) is better than the ones obtained
by other techniques.

5 Conclusions
Regarding the Mode Pursuing Sampling (MPS) method pro-

posed in [1], it was very important and desirable to handle expen-
sive constraints without significantly changing or badly affecting

other MPS’s advantages. It means keeping each responsibility
(i.e., handling expensive objective functions and constrains) as
independent as possible. The CiMPS method proposed in this
paper properly ensures this property.

The performance of the CiMPS method was experimen-
tally verified through two test suites, namely, five benchmark
functions and two design problems. The CiMPS and its par-
ent algorithm (MPS) was compared on both test suites, also

9 Copyright c© 2010 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/23/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use

both competed with four other well-known optimization meth-
ods on design problems. The reported results clearly confirmed
that, CiMPS outperforms not only the MPS but also other four
well-known competitors in terms of convergence speed, num-
ber of constraint evaluations, and solution accuracy. By this way,
CiMPS opens a promising direction to tackle with expensive con-
straint optimization problems.

Developing a mixed-type variable CiMPS, benchmarking it
on more comprehensive and complex test suites, and enhancing
that to solve large-scale problems more efficiently are our direc-
tions for the future work.

REFERENCES
[1] Wang, L., Shan, S., and Wang, G., 2004. “Mode-pursuing

sampling method for global optimization on expensive
black-box functions”. Engineering Optimization, 36(4),
pp. 419–438.

[2] Simpson, T., Peplinski, J., Koch, P., and Allen, J., 2001.
“Metamodels for computer-based engineering design: sur-
vey and recommendations”. Engineering with Computers,
17(2), pp. 129 – 50.

[3] Wang, G., and Shan, S., 2007. “Review of metamodeling
techniques in support of engineering design optimization”.
ASME Journal of Mechanical Design, 129(4), pp. 370 –
80.

[4] Schonlau, M., Welch, W. J., and Jones, D. R., 1998.
“Global versus local search in constrained optimization of
computer models”. Lecture Notes-Monograph Series, 34,
pp. 11–25.

[5] Regis, R. G., and Shoemaker, C. A., 2005. “Constrained
global optimization of expensive black box functions using
radial basis functions”. J. of Global Optimization, 31(1),
pp. 153–171.

[6] Sasena, M. J., Papalambros, P., and Goovaerts, P., 2002.
“Exploration of metamodeling sampling criteria for con-
strained global optimization”. Engineering Optimization,
34, pp. 263–278.

[7] Yannou, B., Simpson, T. W., and Barton, R., 2005. “To-
wards a conceptual design explorer using metamodeling ap-
proaches and constraint programming”. In ASME Design
Engineering Technical Conferences - Design Automation
Conference, no. DETC2003/DAC-48766.

[8] Yannou, B., Moreno, F., Thevenot, H., and Simpson, T.,
2005. “Faster generation of feasible design points”. In
ASME Design Engineering Technical Conferences - De-
sign Automation Conference, no. DETC2005/DAC-85449.

[9] Moghaddam, R., Wang, G., Yannou, B., and Wu, C., 2006.
“Applying constraint programming for design space reduc-
tion in metamodeling based optimization”. In The 16th In-
ternational Institution for Production Engineering Research
(CIRP) International Design Seminar, no. 10081.

[10] Yannou, B., and Harmel, G., 2006. Advances in Design.
Springer London, ch. Use of Constraint Programming for
Design, pp. 145–157.

[11] Wang, G., 2003. “Adaptive response surface method using
inherited latin hypercube design points”. Transactions of

the ASME. Journal of Mechanical Design, 125(2), pp. 210
– 20.

[12] Arora, J., 2004. Introduction to Optimum Design. Elsevier
Academic Press.

[13] Coello, C., 2002. “Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: a
survey of the state of the art”. Computer Methods in Ap-
plied Mechanics and Engineering, 191(11-12), pp. 1245 –
87.

[14] Mezura-Montes, E., ed., 2009. Constraint-Handling in
Evolutionary Optimization. Springer.

[15] Azarm, S., and Mourelatos, Z. P., 2006. “Robust and
reliability-based design”. Journal of Mechanical Design,
128(4), pp. 829–831.

[16] Sharif, B., Wang, G., and ElMekkawy, T., 2008. “Mode
pursuing sampling method for discrete variable optimiza-
tion on expensive black-box functions”. Journal of Me-
chanical Design, 130(2), pp. 021402–1–11.

[17] Duan, X., Wang, G., Kang, X., Niu, Q., Naterer, G., and
Peng, Q., 2009. “Performance study of mode-pursuing
sampling method”. Engineering Optimization, 41(1),
pp. 1–21.

[18] Fu, J., and Wang, L., 2002. “A random-discretization
based monte carlo sampling method and its applications”.
Methodology and Computing in Applied Probability, 4(1),
pp. 5 – 25.

[19] Belegundu, A. D., and Arora, J. S., 1985. “A study of math-
ematical programming methods for structural optimization.
Part II: Numerical results”. International Journal for Nu-
merical Methods in Engineering, 21(9), pp. 1601–1623.

[20] Mahdavi, M., Fesanghary, M., and Damangir, E., 2007.
“An improved harmony search algorithm for solving op-
timization problems”. Applied Mathematics and Computa-
tion, 188(2), pp. 1567 – 1579.

[21] Coello, C. A. C., and Mezura-Montes, E., 2002.
“Constraint-handling in genetic algorithms through the use
of dominance-based tournament selection”. Advanced En-
gineering Informatics.

[22] Geem, Z., Kim, J., and Loganathan, G., 2001. “A new
heuristic optimization algorithm: Harmony search”. Sim-
ulation, 76(2), pp. 60–68.

[23] Powell, M., 1978. “Algorithms for nonlinear constraints
that use lagrangian functions”. Mathematical Program-
ming, 14(1), pp. 224–248.

[24] Wu, S., and Chow, P., 1995. “Genetic algorithms for nonlin-
ear mixed discrete-integer optimization problems via meta-
genetic parameter optimization”. Engineering Optimiza-
tion, 24(2), p. 137159.

[25] Lee, K., and Geem, Z., 2005. “A new meta-heuristic al-
gorithm for continues engineering optimization: harmony
search theory and practice”. Computer Methods in Applied
Mechanics and Engineering, 194(36-38), pp. 3902–3933.

[26] Sandgren, E., 1990. “Nonlinear integer and discrete pro-
gramming in mechanical design optimization”. ASME
Jounral of Mechanical Design, 112(2), pp. 223–229.

10 Copyright c© 2010 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/23/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use

