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Abstract

In this paper, we introduce a new dataset, Kimia Path24,

for image classification and retrieval in digital pathology.

We use the whole scan images of 24 different tissue tex-

tures to generate 1,325 test patches of size 1000×1000

(0.5mm×0.5mm). Training data can be generated accord-

ing to preferences of algorithm designer and can range from

approximately 27,000 to over 50,000 patches if the preset

parameters are adopted. We propose a compound patch-

and-scan accuracy measurement that makes achieving high

accuracies quite challenging. In addition, we set the bench-

marking line by applying LBP, dictionary approach and

convolutional neural nets (CNNs) and report their results.

The highest accuracy was 41.80% for CNN.

1. Introduction

The integration of algorithms for classification and re-

trieval in medical images through effective machine learn-

ing schemes is at the forefront of modern medicine [8].

These tasks are crucial, among others, to detect and analyze

abnormalities and malignancies to contribute to more in-

formed diagnosis and decision makings. Digital pathology

is one of the domains where such tasks can support more re-

liable decisions [23]. For several decades, the archiving of

microscopic information of specimens has been organized

through employing and storing glass slides [2]. Beyond the

fragile nature of glass slides, hospitals and clinics need large

and specially prepared storage rooms to store specimens,

which naturally requires a lot of logistical infrastructures.

Digital pathology, or whole slide imaging (WSI), can not

only provide high image quality that is not subject to decay

(i.e., stains decay over time) but also offers a range of other

benefits [2, 11]: They can be investigated by multiple ex-

perts at the same time, they can be more easily retrieved

for research and quality control, and of course, WSI can

be integrated into existing information systems of hospitals.

In 1999, Wetzel and Gilbertson developed the first auto-

mated WSI system [17], utilizing high resolution to enable

pathologists to buffer through immaculate details presented

through digitized pathology slides. Ever since, pathology

bounded by WSI systems is emerging into an era of digital

specialty, providing solutions for centralizing diagnostic so-

lutions by improving the quality of diagnosis, patient safety,

and economic concerns [12]. Like any other new technol-

ogy, digital pathology has its pitfalls. The gigapixel nature

of WSI scans makes it difficult to store, transfer, and pro-

cess samples in real-time. One also need tremendous dig-

ital storage to archive them. In this paper, we propose a

new and uniquely designed data set, Kimia Path24, for the

classification and retrieval of digitized pathology images. In

particular, the data set is comprised of 24 WSI scans of dif-

ferent tissue textures from which 1,325 test patches sized

1000×1000 are manually selected with special attention to

textural differences. The proposed data set is structured to

mimic retrieval tasks in clinical practice; hence, the users

have the flexibility to create training patches, ranging from

27,000 to over 50,000 patches – these numbers depend on

the selection of homogeneity and overlap for every given

slide. For retrieval, a weighted accuracy measure is pro-

vided to enable a unified benchmark for future works.

2. Related Works

This section covers a brief literature review on im-

age analysis in digital pathology, specifically on WSI, fol-
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lowed by various content-based medical image retrieval

techniques, and finally an overview of feature extraction

techniques that emphasize local binary patterns (LBP).

2.1. Image Analysis in Digital Pathology

In digital pathology, the large dimensionality of the im-

age poses a challenge for computation and storage; hence,

contextually understanding regions of interest of an im-

age helps in quicker diagnosis and detection for imple-

menting soft-computing techniques [7]. Over the years,

traditional image-processing tasks such as filtering, regis-

tration, and segmentation, classification and retrieval have

gained more significance. Particularly for histopathology,

the cell structures such as cell nuclei, glands, and lympho-

cytes are observed to hold prominent characteristics that

serve as a hallmark for detecting cancerous cells [14]. Re-

searchers also anticipate that one can correlate histolog-

ical patterns with protein and gene expression, perform

exploratory histopathology image analysis, and perform

computer aided diagnostics (CADx) to provide patholo-

gists with the required support for decision making [14].

The idea behind CADx to quantify spatial histopathology

structures has been under investigation since the 1990s, as

presented by Wiend et al. [35], Bartels et al. [6], and

Hamilton et al. [16]. However, due to limited compu-

tational resources and its associated expense, implement-

ing such ideas have been overlooked or delayed. In recent

years, however, WSI technology has been gradually set-

ting laboratory standards as a process of digitizing pathol-

ogy slides to advocate for more efficient diagnostic, edu-

cational and research purposes [30]. This approach, un-

like photo-microscopy which is to capture a portion of an

image [37], offers a high-resolution overview of the entire

specimen in the slide which enables the pathologist to take

control over navigating through the slide and saving invalu-

able time [17, 36, 10, 12]. More recently, Bankhead et al.

[4] provided an open-source bio-imaging software, called

QuPath that supports WSI by providing tumor identification

and biomarker evaluation tools which developers can use to

implement new algorithms to further improve the outcome

of analyzing complex tissue images.

2.2. Image Retrieval

Retrieving similar (visual) semantics of an image re-

quires extracting salient features that are descriptive of the

image content. At its entirety, there are two main points

of view for processing the WSI scans [5]. The first one

is called sub-setting methods which considers a small sec-

tion of the huge pathology image as an important part such

that the processing of the small subset substantially reduces

processing time. The majority of research in the literature

prefers this method because of its advantage of speed and

accuracy. However, it needs expert knowledge and inter-

vention to extract the proper subset. On the other hand,

tiling methods break the images into smaller and control-

lable patches and try to process them against each other

[15]. This naturally requires more care in design and is

more expensive in execution. However, it certainly is an

obvious approach toward full automation.

Traditionally, a large medical image database is packaged

with textual annotations classified by specialists; however,

this approach does not perform well against the ever de-

manding growth of digital pathology. In 2003, Zheng et

al. [39] developed an on-line content-based image retrieval

(CBIR) system wherein the client provides a query image

and corresponding search parameters to the server side. The

server then performs similarity searches based on feature

types such as color histogram, image texture, Fourier co-

efficients, and wavelet coefficients, whilst using the vector

dot-product as a distance metric for retrieval. The server

then returns images that are similar to the query image along

with the similarity scores and a feature descriptor. Mehta et

al. [26], on the other hand, proposed an offline CBIR system

which utilizes sub-images rather than the entire histopathol-

ogy slide. Using scale-invariant feature extraction (SIFT)

[22] to search for similar structures by indexing each sub-

image, the experimental results suggested, when compared

to manual search, an 80% accuracy for the top-5 results re-

trieved from a database that holds 50 IHC stained pathology

images, consisting of 8 resolution levels. In 2012, Akakin

and Gurcan [1] developed a multi-tiered CBIR system based

on WSI, which is capable of classifying and retrieving scans

using both multi-image query and images at a slide-level.

The authors test the proposed system on 1, 666 WSI scans

extracted from 57 follicular lymphoma (FL) tissue slides

containing 3 subtypes and 44 neuroblastoma (NB) tissue

slides comprised of 4 subtypes. Experimental results sug-

gested a 93% and 86% average classification accuracy for

FL and NB diseases, respectively. More recently, Zhang et

al. [38] developed a scalable CBIR method to cope with

WSI by using a supervised kernel hashing technique which

compresses a 10,000-dimensional feature vector into only

10 binary bits, which is observed to preserve a concise rep-

resentation of the image. These condensed binary codes are

then used to index all existing images for quick retrieval for

of new query images. The proposed framework is validated

on a breast histopathology data set comprised of 3,121 WSI

scans from 116 patients; experimental results state an accu-

racy of 88.1% for processing at the speed of 10ms for all

800 testing images.

2.3. LBP Descriptor

To generate preliminary results for the introduced data

set, we captured the textural structure of patches by extract-

ing local binary patterns (LBP) [28] as they are among es-

tablished approaches proven to quantify important textures
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in medical imaging [27, 31, 3]. We also experiment with

the dictionary approach [18, 25] and convolutional neural

networks (CNN) [21].

LBP is an extremely powerful and concise texture fea-

ture extractor, with an ability to compete with state-of-the-

art complex learning algorithms. In 2009, Masood and Ra-

jpoot [24] implemented a circular LBP (CLBP) feature ex-

traction algorithm to classify colon tissue patterns using a

Gaussian-kernel SVM on biopsy samples taken from 32

different patients. Each image has a spatial resolution of

491 × 652 × 128 pixels, for which the retrieval accuracy

is computed to be 90% to distinguish between benign and

malignant patterns. In the same year, Sertel et al. [32] pre-

sented a CADx system designed to classify Neuroblastoma

(NB) malignancy, a type of cancer in the nervous system,

using WSI. The authors proposed a multi-resolution LBP

approach which initially analyzes image at the lowest res-

olution and then switches to higher resolutions when nec-

essary. The proposed approach employs offline feature se-

lection, which enables the extraction of more discrimina-

tive features for every resolution level during the training

phase. For retrieval, a modified k-nearest neighbor is em-

ployed which when tested on 43 WSI scans, provides an

overall classification accuracy of 88.4%. More recently,

Tashk et al. [34] proposed a statistical approach based on

color information such as maximum likelihood estimation.

Then, the CLBP is employed to extract texture features

from rotational and color changes, from which the SVM

algorithm classifies the extracted feature vectors as mito-

sis and non-mitosis cases. The proposed scheme obtains

70.94% (F-measure) for Aperio XT images and 70.11% for

Hamamatsu images, both of which are microscopic scan-

ners. The reported method is observed to outperform other

participants at ICPR 2012 Mitosis detection in breast cancer

histopathological images.

3. The “Kimia Path24” Dataset

We had 350 whole scan images (WSIs) from diverse

body parts at our disposal. The images were captured by

TissueScope LE 1.01. The scans were performed in the

bright field using a 0.75 NA lens. For each image, one

can determine the resolution by checking the description

tag in the header of the file. For instance, if the resolution is

0.5µm, then the magnification is 20x, and if the resolution

is 0.25µm, then the magnification is 40x.

We manually selected 24 WSIs purely based on visual

distinction for non-clinical experts which means, in our se-

lection, we made conscious effort to select a subset of the

WSIs such that they clearly represent different texture pat-

terns. Fig. 1 shows the thumbnails of six samples. Fig. 2

displays a magnified portion of each WSI.

1http://www.hurondigitalpathology.com/tissuescope-le-3/

Our intention is to provide a fixed testing dataset to fa-

cilitate benchmarking but respect the design freedom of in-

dividual algorithm designer to generate his own training

dataset. To achieve this, we performed the following steps:

1. We set a fixed size of testing patches to be 1000×1000

pixels that correspond to 0.5mm ×0.5mm.

2. We ignored background pixels (patches) by setting

them to white. We performed this by analyzing

both homogeneity and gradient change of each patch

whereas a threshold was used to exclude background

patches (which are widely homogenous and do not ex-

hibit much gradient information).

3. We manually selected ni patches per WSI with i =

{1, 2, . . . , 24}. The visual patch selection aimed to ex-

tract a small number of patches that represent all dom-

inant tissue textures in each WSI (in fact, every scan

does contain multiple texture patterns).

4. Each selected patch was then removed from the scan

and saved separately as a testing patch.

5. The remaining parts of the WSI can be used to con-

struct a training dataset.

Fig. 3 demonstrate the patch selection for a sample WSI.

The scans are available online and can be downloaded 2.

The dimensions and number of testing patches for each scan

are reported in Table 1.

3.1. Accuracy Calculation

We have a total of ntot = 1, 325 patches P j
s that belong

to 24 sets Γs = {P i
s |s ∈ S, i = 1, 2 . . . , nΓs

} with s =

0, 1, 2, . . . , 23 (nΓs
reported in the last column of Table 1).

Looking at the set of retrieved images R for any experiment,

the patch-to-scan accuracy ηp can be given as

ηp =

∑
s∈S

|R ∩ Γs|

ntot

. (1)

As well, we calculate the whole-scan accuracy ηW as

ηW =
1

24

∑

s∈S

|R ∩ Γs|

nΓs

. (2)

Hence, the total accuracy ηtotal can be defined to take into

account both patch-to-scan and whole-scan accuracies:

ηtotal = ηp × ηW. (3)

The Matlab and Python code for accuracy calculations can

also be downloaded.

2Downloading the dataset: http://kimia.uwaterloo.ca
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Figure 1. The “Kimia Path24” Dataset: Thumbnails of six sample whole scan images. Aspect ratio has been neglected for better illustration.

4. Experiments on “Kimia Path24” Dataset

To provide preliminary results to set a benchmark line

for the proposed data set, we performed three series of re-

trieval and classification experiments: (i) Local Binary Pat-

tern (LBP), (ii) Bag of Words (BOW), and (iii) Convolu-

tional Neural Networks (CNN). The following subsections

will elaborate on every series of experiments and report the

overall accuracy of each method. Table 2 provides the re-

sults for all tested methods.
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Figure 2. All 24 scans used to generate the Kimia Path24 dataset. The images represent approximately 20x magnification of a portion of

the whole scan images as depicted in Fig. 1.
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