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Abstract Cooperative co-evolution has proven to be a suc-
cessful approach for solving large-scale global optimiza-
tion (LSGO) problems. These algorithms decompose the
LSGO problems into several smaller subcomponents using
a decomposition method, and each subcomponent of the
variables is optimized by a certain optimizer. They use
a simple technique, the round-robin method, to equally
assign the computational time. Since the standard coop-
erative co-evolution algorithms allocate the computational
budget equally, the performance of these algorithms deteri-
orates for solving LSGO problems with subcomponents by
various effects on the objective function. For this reason, it
could be very useful to detect the subcomponents’ effects on
the objective function in LSGO problems. Sensitivity analy-
sis methods can be employed to identify the most significant
variables of a model. In this paper, we propose a coopera-
tive co-evolution algorithm with a sensitivity analysis-based
budget assignment method (SACC), which can allocate the
computational time among all subcomponents based on
their different effects on the objective function, accordingly.
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SACC is benchmarked on imbalanced LSGO problems.
Simulation results confirm that SACC obtains a promis-
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benchmark functions.
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1 Introduction

Many real-world problems can be formulated as optimiza-
tion problems having a large number of decision variables
[11, 15, 35]. A large number of metaheuristic algorithms
have been applied to solve real-world problems, but the
performance of these algorithms deteriorates when the
dimension of the optimization problem increases [2, 11,
36, 38]. There are two main reasons for the low perfor-
mance of metaheuristic algorithms [2, 11, 36, 38]. First,
their landscape complexity increases with the increase in
the problem dimension. Second, the search space exponen-
tially increases with the problem size. Potter and De Jong
in 1994 [23, 24] proposed the first cooperative co-evolution
(CC) framework to solve n-dimensional optimization prob-
lems. These methods used a divide-and-conquer strategy
to decompose an n-dimensional decision vector into some
low-dimensional subcomponents and then evolved these
subcomponents separately. CC algorithms lose their effi-
ciency on non-separable problems when interacting vari-
ables are placed in different subcomponents [24]. Thus, sub-
components cannot be efficiently evolved independently,
since the influence of a variable on the fitness value in
one subcomponent depends on other variables in different
subcomponents. In CC algorithms, the ideal decomposi-
tion method should associate variables into subcomponents
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such that the interdependencies among different subcompo-
nents are minimal [18, 39]. A major part of the challenge
of CC algorithms is the design of a decomposition method
that is able to minimize the interdependencies among dif-
ferent subcomponents. Recently, a large number of CC
algorithm modifications have been developed to enhance the
detection of interacting variables. These algorithms can be
divided into two major categories in terms of the utilized
decomposition strategy, namely, static and dynamic decom-
position methods [15]. In the static grouping based CC
methods, a fixed value ‘k’ is selected for the subcomponent
size and then the associated variables of each subcompo-
nent remain fixed in all the optimization iterations. In the
dynamic CC methods, the knowledge of the subcomponent
structure is dynamically obtained either before or during the
optimization process.

In addition, another significant feature of CC algorithms
is the computational budget assignment among all sub-
components. This plays a critical role in the performance
improvement in the CC framework to tackle imbalanced
LSGO problems. Most real-world optimization problems
have some imbalance among different subcomponents, i.e.,
their contributions to the objective function are different
[11, 18]. The performance of the standard CC algorithms
deteriorate on the imbalanced LSGO problems, because
they divide computational resources equally among sub-
components (i.e., round-robin method) [18, 22]. Omidvar
et al. [18, 22] proposed a contribution based cooperative
co-evolution (CBCC) method, in which the subcomponent
having the maximum effect on the objective function is
selected for further optimization. They introduced two ver-
sions of the CBCC method, CBCC1 and CBCC2. CBCC1
optimizes the selected subcomponent for only one itera-
tion, whereas CBCC2 optimizes it until the fitness value
is improved. They indicated that with an accurate decom-
position method, CBCC methods can accurately compute
the contribution of the subcomponents. The CBCC methods
spend more computational budget on only the one subcom-
ponent that has the maximum effect. By considering the
effect of all the subcomponents, it is possible to devise a
better budget assignment method. Only a limited number of
research works have been developed to study the different
effects of subcomponents on the objective function. Thus,
it would be interesting to investigate how CC algorithms
assign computational resources among all the subcompo-
nents to improve their performance [15, 19]. Obviously,
a good budget scheduling method can improve the per-
formance of CC algorithms for solving imbalanced LSGO
problems.

In this paper, we propose a CC algorithm with a sen-
sitivity analysis-based budget assignment method (called
SACC), where it can assign a specific amount of the compu-
tational budget to each subcomponent according to its effect

on the objective function. The sensitivity analysis technique
is an important tool for studying the influence of the varia-
tion in the models’ input parameters on the variation in its
outputs [25, 27, 28]. In addition, screening methods are a
type of sensitivity analysis methods that are applied to com-
pute the sensitivity of the input parameters in a model. The
main effect for each subcomponent is computed by using
the Morris screening method. Then, the number of the opti-
mization iterations for each subcomponent is determined
according to its computed main effect. The performance
of the SACC is evaluated on a set of benchmark func-
tions, which are modified types of CEC-2010 benchmark
problems having the imbalanced subcomponents and CEC-
2013 LSGO benchmark functions. The proposed method
is compared with the standard CC and contribution based
CC algorithms. Furthermore, our results confirm that the
SACC performs significantly better than other methods on
the imbalanced LSGO problems.

The organization of the rest of this paper is as follows.
Section 2 gives a background review of cooperative co-
evolution algorithms, various decomposition methods, and
the Morris screening method. In Section 3, the proposed CC
framework is described in detail. In Section 4, the exper-
imental results and discussion are presented. Finally, the
paper is concluded in Section 5.

2 Background review

2.1 Cooperative co-evolution

In [23, 24], standard CC algorithms were introduced for
decomposing LSGO problems based on a one-dimensional
based strategy. The main steps of the CC framework are
described as follows:

1. Decompose a high-dimensional problem into m low-
dimensional non-overlapping subcomponents.

2. Set k = 1 to begin a loop, which is repeated for the
number of subcomponents.

3. Evolve each subcomponent by an optimization algo-
rithm for a few iterations in the round-robin scheme.

4. If k < m, then k + +, and go to Step 3.
5. Stop the evolutionary process if the termination condi-

tion is satisfied; otherwise, go to Step 2.

For computing the fitness of an individual, an n-dimensional
vector is constructed using this individual and the selected
members from other subcomponents. Liu et al. [13] pro-
posed a CC framework with Fast Evolutionary Program-
ming (FEP), called FEPCC, to solve optimization problems
with up to 1000 dimensions. In 2004, Van den Bergh and
Engelbrecht applied the CC framework using PSO algo-
rithms in which an n-dimensional problem is partitioned
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into K s-dimensional sub-problems (s << n) [37]. In
[33], a splitting-in-half strategy was proposed in which an
n dimensional problem is divided into two n/2 subcompo-
nents. In [39], a random decomposition method (DECC-G)
was introduced for handling large scale non-separable prob-
lems with up to 1000 dimensions. In DECC-G, an LSGO
problem is randomly decomposed into several smaller sub-
components. DECC-G increases the probability that inter-
action variables are assigned to one same subcomponent. A
major drawback of the DECC-G method is that its perfor-
mance is degraded when the number of interacting variables
increases [20]. In the mentioned CC methods, a major dif-
ficulty is the detection of the appropriate value for the
subcomponent size. Yang et al. [40] proposed a multilevel
cooperative co-evolution (MLCC) algorithm which uses a
decomposer pool based on a set of possible subcomponent
sizes. The MLCC method assigns some selection proba-
bilities to all decomposers, which are adaptively updated
according to the performance of each decomposer in the
optimization process. In this method, the selection of the
subcomponent size is difficult. Also, after a subcomponent
size is selected, the problem is decomposed into a set of
subcomponents with the equal size [18].

Ray and Yao [26, 34] introduced the correlation matrix-
based algorithms in which the subcomponents are con-
structed according to the computed correlations of the
variables in each generation. These methods have a low
performance for the detection of the nonlinear depen-
dencies among variables and also use vast computational
resources [17]. In [21], a delta decomposition method
was proposed for decomposing LSGO problems based on
the absolute amount of change in each dimension at two
sequential cycles. The performance of the delta method
decreases to solve non-separable problems having multi-
ple non-separable subcomponents [18]. A CC method with
variable interaction learning (CCVIL) was introduced in
[4] that can adaptively discover the interaction among vari-
ables. The CCVIL method has two stages, learning and
optimization. In the learning stage, each variable is placed
in a subcomponent and optimized similar to a basic CC
methods at the limited cycles. After each subcomponent
is optimized, the interaction among current and previous
optimized subcomponents is considered for merging inter-
dependent subcomponents and then new subcomponents are
optimized in the optimization stage. The challenging part
of CCVIL is determining an appropriate balance between
the fitness evaluations in the learning and optimization
stages [3].

Sayed et al. [29, 30] proposed a dependency identifi-
cation (DI) algorithm which uses an internal minimization
problem to create subcomponents according to the con-
cept of partially separable functions during the CC process.
In [10], an adaptive cooperative particle swarm optimizer

was proposed based on using learning automata. Action
set and the action probability vectors of learning automata
were updated based on the population to identify the inter-
action variables and integrate them into a joint swarm.
Mahdavi et al. [14] introduced a decomposition algorithm
(DM-HDMR) based on the high dimensional model rep-
resentation method. In DM-HDMR, first an RBF-HDMR
model is approximated by using the first-order RBF-HDMR
proposed by Shan and Wang [31]. Then, the interactions
among variables are recognized according to the obtained
correlations of the first-order RBF-HDMR to create sub-
components. Liu and Tang [12] proposed the cooperative
coevolution covariance matrix adaptation evolution strat-
egy (CC-CMA-ES), which uses a CC framework with the
CMA-ES algorithm for handling with LSGO problems.
They introduced two new decomposition methods accord-
ing to the diagonal of the covariance matrix of the CMA-ES
algorithm. It has been shown recently [11, 18] that, in
the presence of a highly accurate decomposition method,
budget scheduling methods are beneficial. Therefore, we
selected a recent decomposition method, namely, the differ-
ential decomposition method which has high accuracy on
the balanced CEC-2010 benchmark functions.

2.2 Differential grouping (DG) method

In [18], a differential grouping (DG) method was proposed
based on the definition of the partial separable functions.
They defined and proved a theorem to identify pairwise
interacting variables, which is described as follows.

Theorem 1 If the following condition holds for an addi-
tively separable function f (x):

∀a, b1 �= b2, δ ∈ R, δ �= 0, �δ,xp [f ](x)|xp=a,xq=b1

�= �δ,xp [f ](x)|xp=a,xq=b2 (1)

then xp and xq are non-separable, where �(δ,xp)[f ](x) =
f (. . . , xp + δ, . . . ) − f (. . . , xp, . . . ) is the forward dif-
ference of f according to variable xp with the interval δ.
In the DG algorithm, first, for an array including all the
variables, the interactions among all variables with the first
variable of the function are investigated based on this theo-
rem. Then, the variables having an interaction with the first
variable are placed in the same subcomponent and removed
from the array of variables. This process is repeated for
all the remaining variables in the array. Variables that do
not have any interaction with other variables are assigned
to a separable subcomponent. When DG constructs non-
separable and separable subcomponents, the standard CC
framework [23, 24] is applied to optimize the subcompo-
nents in a round-robin fashion by using a self-adaptive evo-
lution differential with the neighbourhood search strategy
(SaNSDE) [41].
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2.3 Morris screening method

The models of real-world processes are computationally
expensive and involve a large number of input factors.
Screening methods can identify the most important input
factors among a set of input factors with a few model eval-
uations. In 1991, Morris [16] proposed a screening method
to identify the input factors with the strongest effect on the
output variability in models with many input factors. The
steps of Morris method are as follows.

1. The range of each model input factor Xi, i = 1, . . . , n

is divided into p levels in the space of the input factors
(n-dimensional p-level grid).

2. For each factor, a base point x is randomly chosen on
the p-level grid.

3. An elementary effect (EEi) for each input factor i is
defined by:

EEi(x) = f (x1, . . . , xi−1, xi + �, . . . , xn) − f (x)
�

,

(2)

where � is a multiple of 1/(k − 1) and p is the number
of levels.

4. Several values of EEi are computed to provide mea-
sures of sensitivity. Therefore, for computing the
expected values of EEi r trajectories are generated.
Each trajectory includes n + 1 points, changing each
input factor exactly once at different locations in the
level grid.

5. The mean and the standard deviation distribution of r

EEi are computed as two sensitivity measures, μ and
σ .

In the Morris method, the number of evaluations is r(n+1).
In the computation of the μ value, EEi values can be of
opposite sign and cancel each other. For this reason, Cam-
polongo et al. [1] proposed the mean (μ∗) of the absolute
elementary values instead of the μ value. Also, they sug-
gested selecting r = [10, 20], p = [4, 8], and � = p/2(p−
1) which most screening method research studies have used
these suggested values. In this paper, we employed the mean
(μ∗) of the absolute elementary values and r = 20, p = 8,
and � = p/2(p−1). The source code of the Morris method
can be found in [7].

3 Cooperative co-evolution algorithm
with sensitivity analysis-based budget
assignment method

The standard CC algorithms use the round-robin method to
optimize all the subcomponents; therefore, some fraction of

the computational budget may be wasted by some subcom-
ponents that contribute little to the global fitness [18, 22].
Many real-world problems have some non-separable sub-
components, which have various effects on the objective
function. Therefore, a significant challenge of CC algo-
rithms is how the computational budget can be divided
among all subcomponents according to their effects. In this
section, we propose using the Morris screening method to
divide the computational budget among various subcompo-
nents according to their main effect on the global fitness
value. In the following, the three strategies of sensitivity
analysis-based Cooperative Co-evolution (SACC1, SACC2,
and SACC3) methods are described in detail. Algorithm 1
shows the details of the proposed strategies. First, the sub-
components are constructed via a decomposition method
(line 2). Then, the Morris method is employed to compute
the main effect (μ∗) of each variable (line 4). A normal-
ized ratio MEs , called the main effect, is computed for
each subcomponent proportional to its effect on the fitness
value, which is defined as the sum effects of all its vari-
ables divided by the sum effects of all the decision variables
(line 6).

The main effect of a subcomponent s is calculated based
on Morris measure μ∗ as follows:

MEs =
∑k

i=1 μ�
i∑n

i=1 μ�
i

, (3)

where parameters k and n are the number of variables in the
subcomponent s and all variables of the function, respec-
tively; and parameter μ�

i is the Morris sensitivity measure
for the variable i. MEs provides an ordering of the all
subcomponents’ effects to select the subcomponent having
the maximum effect. In SACC1 (lines 10–38), the sub-
component with the maximum MEs is selected which this
subcomponent has the most effect on the global fitness
value. Then, the selected subcomponent is optimized at only
one iteration (lines 25–35) after that all subcomponents are
optimized in a round-robin fashion at each cycle of the CC
algorithm. The SACC2 (lines 10–38) strategy is similar to
SACC1, but it optimizes the subcomponent with the maxi-
mum MEs by the different number of iteration. In fact, after
optimizing the subcomponent with the maximum MEs , it
computes the difference among the current best obtained
solution and the previous one (line 32) as the improvement
of the best obtained solution. Then, this subcomponent is
optimized until it can improve the best obtained solution
(lines 25–37).

The SACC3 strategy (lines 39–50) assigns a special num-
ber of the computational budgets (line 7), I ters , for a
subcomponent s which is defined as:

I ters = c1 + �log

(
MEs

MEmin

)

�, (4)
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where MEmin is the minimum of the MEs values for all
subcomponents and c1 is a predefined number of the compu-
tational budget to optimize a subcomponent in the standard
CC algorithms. Also, �.� is the floor function. Note that
μ�

i value is related to the absolute value of the objective
function and therefore I ters cannot be obtained directly
by dividing the absolute value μ�

i of the subcomponents.
I ters is constructed based on the MEs value, which gives
a ratio value for the effect of each subcomponent (i.e., sub-
components can be sorted according to their effects). I ters
is carefully formulated such that the subcomponents with
the higher effects have a greater number of the computa-
tional budget and vice versa. In SACC3, the contribution of
each subcomponent to the global fitness value can be esti-
mated based on the sensitivity measure μ�

i in the Morris
method. The SACC3 strategy attempts to divide the com-
putational budget among different subcomponents based
on their approximated contributions. On the other hand, if
the effects of all the subcomponents are very similar and
the Morris method can approximate MEs values with high
accuracy, I ters is equal to 1. It is important to mention that
the normalized ratio MEs values are proportional to the
effect of the subcomponents on the fitness value, and there-
fore, we can apply other methods that are able to compute
these normalized ratio values. In CC algorithms, the num-
ber of the computational budget for each subcomponent is
1 and in this paper, c1 was also set to 1. Note that a sig-
nificant advantage of the proposed method is that it does
not add any heuristic parameter to the basic CC algorithms.
We consider some simple examples to demonstrate how the
SACC3 strategy assigns I ters . In all the examples, we used
the source code of the Morris method in [7] to compute μ�

i

values.

Example 1 For k = 4 and n = 16, consider a non-separable
function which is expressed as follows:

f (X) = 10−4.frastrigin(x1, x2, x3, x4)

+ 10−2.frastrigin(x5, x6, x7, x8)

+ 102.frastrigin(x9, x10, x11, x12)

+ 104.frastrigin(x13, x14, x15, x16)

where frastrigin(X) = ∑D
i=1 xi

2 − 10. cos(2πxi) + 10.
This non-separable function has four subcomponents with
the different effects. First, μ�

i values of 16 variables are
computed by the Morris method. Table 1 shows μ�

i values.

Then, MEs values of four subcomponents are computed and
we have:

ME1 =
∑4

i=1 μ�
i

∑16
i=1 μi

= 9.68 × 10−9,

ME2 =
∑8

i=5 μ�
i

∑16
i=1 μi

= 9.93 × 10−7,

ME3 =
∑12

i=9 μ�
i

∑16
i=1 μi

= 9.38 × 10−3,

ME4 =
∑16

i=13 μ�
i

∑16
i=1 μi

= 9.91 × 10−1,

Thus,

I ter1 = 1 + �log

(
ME1

MEmin

)

� = 1 + �log ((1)� = 1,

I ter2 = 1 + �log

(
ME2

MEmin

)

� = 1 + �log
(

1.03 × 102
)
�

= 7,

I ter3 = 1 + �log

(
ME3

MEmin

)

� = 1 + �log
(

9.69 × 105
)
�

= 20, I ter4 = 1 + �log

(
ME4

MEmin

)

�

= 1 + �log
(

1.02 × 108
)
� = 27,

The calculated μ�
i values of 16 variables and I ters of the

subcomponents are given in Fig.1a.

Example 2 For k = 4 and n = 16, consider a non-separable
function which is expressed as follows:

f (X) = 104.frastrigin(x1, x2, x3, x4)

+ 104.frastrigin(x5, x6, x7, x8)

+ 104.frastrigin(x9, x10, x11, x12)

+ 104.frastrigin(x13, x14, x15, x16)

This non-separable function has four subcomponents with
the equal effects. First, μ�

i values of 16 variables are com-
puted by Morris method. Table 2 shows μ�

i values. Then,
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Table 1 μ�
i values of 16 variables

Variables x1 x2 x3 x4 x5 x6 x7 x8

μ�
i values 2.32×10−3 2.28×10−3 2.31×10−3 2.32e×10−3 2.31×10−1 2.31×10−1 2.25×10−1 2.59×10−1

Variables x9 x10 x11 x12 x13 x14 x15 x16

μ�
i values 2.44×103 2.27×103 2.33×103 1.91×103 2.33×105 2.45×105 2.24×105 2.44×105

MEs values of four subcomponents are computed and we
have:

ME1 =
∑4

i=1 μ�
i

∑16
i=1 μi

= 2.41 × 10−1, ME2

=
∑8

i=5 μ�
i

∑16
i=1 μi

= 2.47 × 10−1,

ME3 =
∑12

i=9 μ�
i

∑16
i=1 μi

= 2.64 × 10−1, ME4

=
∑16

i=13 μ�
i

∑16
i=1 μi

= 2.47 × 10−1,

Thus,

I ter1 = 1 + �log

(
ME1

MEmin

)

� = 1 + �log (1)�=1, I ter2

= 1 + �log

(
ME2

MEmin

)

� = 1 + �log (1.02)� = 1,

I ter3 = 1+�log

(
ME3

MEmin

)

�=1+�log (1.1)�=1, I ter4

= 1 + �log

(
ME4

MEmin

)

� = 1 + �log (1.02)� = 1,

The calculated μ�
i values of 16 variables and I ters of the

subcomponents are given in Fig.1b.

Example 3 For k = 4 and n = 16, consider a non-separable
function which is expressed as follows:

f (X) = 102.frastrigin(x1, x2, x3, x4)

+10−2.frastrigin(x5, x6, x7, x8)

+102.frastrigin(x9, x10, x11, x12)

+104.frastrigin(x13, x14, x15, x16)

This non-separable function has two subcomponents with
the equal effects and two subcomponents with the different
effects. First, μ�

i values of 16 variables are computed by
Morris method. Table 3 shows μ�

i values. Then, MEs values
of four subcomponents are computed and we have:

ME1 =
∑4

i=1 μ�
i

∑16
i=1 μi

=9.89×10−3, ME2 =
∑8

i=5 μ�
i

∑16
i=1 μi

=1.07×10−6,

ME3 =
∑12

i=9 μ�
i

∑16
i=1 μi

=1.06×10−2, ME4 =
∑16

i=13 μ�
i

∑16
i=1 μi

=9.80×10−1,

Fig. 1 μ�
i values of 16 variables and I ters values of the four groups
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Table 2 μ�
i values of 16 variables

Variables x1 x2 x3 x4 x5 x6 x7 x8

μ�
i values 2.28×105 2.02×105 2.39×105 2.39×105 2.15×105 2.41×105 2.50×105 2.24×105

Variables x9 x10 x11 x12 x13 x14 x15 x16

μ�
i values 2.28×105 2.62×105 2.67×105 2.38×105 2.16×105 2.42×105 2.36×105 2.37×105

Thus,

I ter1 = 1 + �log

(
ME1

MEmin

)

� = 1 + �log
(

9.24 × 103
)
�

= 14,

I ter2 = 1 + �log

(
ME2

MEmin

)

� = 1 + �log (1)� = 1,

I ter3 = 1 + �log

(
ME3

MEmin

)

� = 1 + �log
(

9.91 × 103
)
�

= 14, I ter4 = 1 + �log

(
ME4

MEmin

)

�

= 1 + �log
(

9.16 × 105
)
� = 20,

The calculated μ�
i values of 16 variables and I ters of the

subcomponents are given in Fig. 2.

4 Experimental studies and discussions

4.1 Experimental setup

In order to evaluate the performance of the proposed sen-
sitivity analysis-based CC algorithm, we have utilized the
same set of modified CEC-2010 benchmark functions used
by Omidvar et al. [18] and also a new set of the benchmark
functions based on the CEC-2010 benchmark functions. The
CEC-2010 benchmark functions were provided by the CEC-
2010 Special Session and Competition on LSGO [35]. In
this test set, there are five types of functions as follows:

– Separable functions (f1–f3)
– Single-group m-non-separable functions (f4–f8)
– n

2m
-group m-non-separable functions (f9–f13)

– n
m

-group m-non-separable functions (f14–f18)
– Non-separable functions (f19–f20)

Where n is the dimension of the function and m is the num-
ber of the variables in each non-separable subcomponent.
The CEC-2010 benchmark functions have some functions
(f4–f8) with an imbalanced non-separable subcomponent.
In the modified CEC-2010 benchmark functions, Omidvar
et al. created an imbalance effect by multiplying some coef-
ficients to the subcomponents of the CEC-2010 benchmark
functions (f9–f18). These coefficients are the fixed pow-
ers of 10 and we added the imbalanced functions f4–f8

from CEC-2010 along with the modified CEC-2010 bench-
mark functions in our all experiments. Also, we generated a
new set of the benchmark functions, i.e., the modified CEC-
2010 test functions with normal weights, which is similar to
the modified CEC-2010 test functions while a component
is multiplied to a normal distribution coefficient to create
an imbalance normal effect. In the modified CEC-2010 test
functions, the coefficients of subcomponents are the same
for all functions while in the modified CEC-2010 test func-
tions with normal weights, the different imbalance effects
are generated by the normal coefficients for all functions.
The normal coefficient for ith non-separable subcomponent
is calculated as following formula proposed in [11]:

Ci = 103N(0,1) (5)

The normal coefficients are provided in the Appendix. In
addition, some experiments are conducted on the CEC-
2013 LSGO benchmark functions [11] (on the imbalance
non-separable functions, i.e., f4–f11 and f13–f14) with
new challenging transformations such as ill-conditioning,
symmetry breaking, irregularities and having subcompo-
nents with non-uniform subcomponent sizes. The CEC-
2013 LSGO benchmark functions are divided into five
classes: fully separable functions (f1–f3), partially separa-
ble functions with a separable subcomponent (f4–f7), par-
tially separable functions with no separable subcomponents
(f8–f11), overlapping functions (f12–f14) and one fully

Table 3 μ�
i values of 16 variables

Variables x1 x2 x3 x4 x5 x6 x7 x8

μ�
i values 2.34×103 2.23×103 2.22×103 2.33×103 2.60×10−1 2.34×10−1 2.43×10−1 2.50×10−1

Variables x9 x10 x11 x12 x13 x14 x15 x16

μ�
i values 2.48×103 2.33×103 2.31×103 2.62×103 2.25×105 2.34×105 2.14×105 2.29×105
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Fig. 2 μ�
i values of 16 variables and I ters values of the four groups

non-separable function (f15). For fair comparison among
CC algorithms, all compared CC algorithms should be the
same optimizer algorithm and also all setting of parameters’
optimizer algorithm should be equal. Therefore, we applied
a self-adaptive evolution differential with the neighbour-
hood search strategy (SaNSDE) [41] as optimizer algorithm
in all CC algorithms. Also, in this study, the maximum num-
ber of evaluations (FES) was set to 3 × 106, the population
size (NP) was set to 50, and all algorithms were evaluated
for 25 independent runs and the results were recorded. All
setting of optimizer algorithm and its parameters are similar
to [18]. It should be noted that in comparison with all com-
pared algorithms, we run the compared methods by using
the source code of the CC algorithm with DG decompo-
sition method (DECC-DG) in http://goanna.cs.rmit.edu.au/
∼xiaodong/publications.php. In SACC methods, the param-
eters r and p were set to 20 and 8 in the Morris method as
mentioned above.

4.2 Comparison of SACC methods (SACC1, SACC2,
and SACC3) with the standard CC

In this section, we present the experimental results for
CC algorithms with three proposed types of SACC; and
we compare them against the standard round-robin CC
algorithm. To make the comparison fair, compared CC algo-
rithms used the same decomposition method to construct
subcomponents. To test whether the sensitivity analysis-
based budget division technique can improve the perfor-
mance of CC algorithms, we tested two decomposition
methods, namely, DG and ideal grouping for CC algo-
rithms. Ideal grouping method constructs subcomponents
manually using the knowledge of benchmark functions. Due
to the specific properties of the CEC-2013 LSGO bench-
mark functions, as mentioned above, DG decomposition
method performed poorly on these functions; thus we use

only ideal decomposition method to make a fair compari-
son in all experiments on these test functions. We performed
some statistical tests used in [19] for comparing multiple
algorithms. First, the Kruskal-Wallis nonparametric one-
way ANOVA [32] is applied to find significant differences
among algorithms [19]. When this test finds a significant
difference, a series of pair-wise Wilcoxon rank-sum [32]
tests at a 0.05 significance level are performed with the
Holm p-value correction [32] in order to account for the
family-wise error rate. As mentioned in [19], only median is
considered because the used statistical tests are nonparamet-
ric and all statistically similar algorithms are marked in bold
face which are not outperformed by the other compared
algorithms.

4.2.1 Experiment series 1: results with the DG
decomposition method

Table 4 shows the results of the CC algorithm with three
proposed sensitivity analysis-based budget division meth-
ods and the standard round-robin CC algorithm (DECC-
DG) along with the DG decomposition method on the
modified CEC-2010 test functions and the modified CEC-
2010 test functions with normal weights. It can be seen
from Table 4a on the modified CEC-2010 test functions,
SACC3 is the best performing algorithm and outperforms
other algorithms on 9 out of 15 functions while DECC-DG,
SACC1, and SACC2 obtain best results for 4, 7, and 4 func-
tions, respectively. Note that according to obtained p-values
of Holm correction SACC1 and SACC2 also outperform
statistically DECC-DG on 3 (f5, f7, and f9) and 3 (f5, f9,
and f17) functions, respectively. On f11, SACC3 does not
work as well as DECC-DG. One possible reason for that
behavior is that the Morris method cannot correctly identify
important variables so that the four maximum subcompo-
nents of this function are misplaced. It should be noted that
the performance of SACC3 is more sensitive to high accu-
racy of the Morris method than SACC1 and SACC2; thus
they have results better than, or similar to DECC-DG on
f11. On f18 and f16, an ideal decomposition method should
construct 20 non-separable subcomponents, but the DG
decomposition method constructs 12 and 24 non-separable
subcomponents for f18 and f16, respectively. Therefore, one
possible reason why SACC3 cannot correctly assign the
budget is that the DG decomposition method has the poor
accuracy.

It is obvious from Table 4b on the modified CEC-2010
test functions with normal weights that SACC3 as the best
algorithm outperforms other algorithms on 9 out of 15 func-
tions. DECC-DG, SACC1, and SACC2 obtain best results
for 5, 6, and 8 out of 15 functions, respectively. Note that
according to obtained p-values of Holm correction SACC1
and SACC2 also outperform statistically DECC-DG on 3

http://goanna.cs.rmit.edu.au/~xiaodong/publications.php
http://goanna.cs.rmit.edu.au/~xiaodong/publications.php
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Table 4 Results of SACC and standard CC algorithm with DG decomposition method

(a) The modified CEC-2010 test functions (b) The modified CEC-2010 test functions with normal weights

Function DECC-DG SACC1 SACC2 SACC3 Function DECC-DG SACC1 SACC2 SACC3

f4 Median 1.93e+12 2.01e+12 1.82e+12 9.40e+10 f4 Median 3.18e+11 1.71e+11 1.55e+11 7.96e+10

Mean 2.08e+12 1.96e+12 1.99e+12 9.57e+10 Mean 3.27e+11 1.80e+11 1.77e+11 8.32e+10

Std 6.76e+11 5.18e+11 6.68e+11 3.13e+10 Std 1.42e+11 5.98e+10 6.78e+10 3.17e+10

f5 Median 1.28e+08 1.11e+08 1.12e+08 9.72e+07 f5 Median 2.31e+04 2.05e+04 2.00e+04 1.88e+04

Mean 1.36e+08 1.15e+08 1.18e+08 9.94e+07 Mean 2.32e+04 2.08e+04 1.99e+04 1.96e+04

Std 2.24e+07 1.60e+07 2.39e+07 1.77e+07 Std 3.33e+03 3.08e+03 2.06e+03 2.49e+03

f6 Median 1.63e+01 1.64e+01 1.64e+01 1.79e+01 f6 Median 1.64e+01 1.64e+01 1.64e+01 1.71e+01

Mean 1.63e+01 1.63e+01 1.64e+01 1.79e+01 Mean 1.64e+01 1.64e+01 1.64e+01 1.71e+01

Std 3.15e−01 3.98e−01 2.88e−01 2.78e−01 Std 2.91e−01 3.23e−01 4.06e−01 3.12e−01

f7 Median 6.63e+00 5.69e−01 3.67e+00 3.59e+04 f7 Median 5.56e+03 7.56e+02 1.81e+02 6.76e+04

Mean 2.60e+04 6.67e−01 4.61e+00 3.48e+04 Mean 6.58e+03 1.26e+03 7.14e+02 6.97e+04

Std 5.38e+04 5.05e−01 2.94e+00 8.80e+03 Std 4.31e+03 1.26e+03 9.87e+02 1.41e+04

f8 Median 1.69e+06 2.84e+04 1.48e+06 2.65e+06 f8 Median 7.89e+04 1.08e+05 7.68e+04 3.42e+05

Mean 1.86e+06 5.11e+05 1.57e+06 2.08e+06 Mean 1.64e+05 1.39e+05 7.02e+04 6.14e+05

Std 1.12e+06 1.32e+06 1.49e+06 1.76e+06 Std 2.46e+05 1.22e+05 5.17e+04 4.65e+05

f9 Median 3.38e+11 2.25e+11 2.66e+11 1.41e+10 f9 Median 1.01e+11 6.84e+10 7.33e+10 4.32e+10

Mean 3.45e+11 2.37e+11 2.64e+11 1.51e+10 Mean 1.10e+11 6.85e+10 6.91e+10 5.28e+10

Std 7.20e+10 4.85e+10 5.98e+10 5.12e+09 Std 6.44e+10 1.83e+10 2.25e+10 3.05e+10

f10 Median 2.79e+07 2.62e+07 2.77e+07 9.65e+06 f10 Median 3.03e+05 3.06e+05 3.00e+05 1.21e+05

Mean 2.80e+07 2.68e+07 2.80e+07 9.55e+06 Mean 3.04e+05 3.01e+05 2.99e+05 1.22e+05

Std 2.18e+06 2.74e+06 1.65e+06 1.60e+06 Std 1.54e+04 1.85e+04 1.82e+04 2.20e+04

f11 Median 1.06e+01 1.06e+01 1.04e+01 1.69e+01 f11 Median 1.07e+01 1.09e+01 1.05e+01 1.09e+01

Mean 1.07e+01 1.06e+01 1.04e+01 1.79e+01 Mean 1.05e+01 1.08e+01 1.05e+01 1.09e+01

Std 7.67e-01 8.06e-01 7.86e-01 3.06e+00 Std 6.51e-01 7.59e-01 9.81e-01 7.70e-01

f12 Median 4.55e+07 4.40e+07 4.64e+07 1.91e+06 f12 Median 1.53e+07 1.40e+07 1.93e+07 1.79e+02

Mean 5.12e+07 4.64e+07 4.79e+07 3.18e+06 Mean 1.60e+07 1.45e+07 2.08e+07 4.02e+02

Std 3.19e+07 1.03e+07 8.80e+06 3.68e+06 Std 5.01e+06 3.53e+06 8.66e+06 4.57e+02

f13 Median 1.10e+07 1.10e+07 1.11e+07 1.17e+07 f13 Median 1.08e+07 1.02e+07 1.98e+07 2.40e+07

Mean 1.06e+07 9.91e+06 1.13e+07 1.15e+07 Mean 1.61e+07 1.34e+07 1.92e+07 7.96e+07

Std 3.14e+06 4.36e+06 4.96e+06 6.62e+06 Std 8.36e+06 7.38e+06 8.93e+06 1.20e+08

f14 Median 6.42e+12 6.08e+12 5.63e+12 4.03e+12 f14 Median 2.24e+13 2.06e+13 2.26e+13 2.00e+12

Mean 6.43e+12 6.19e+12 5.92e+12 4.50e+12 Mean 2.27e+13 2.17e+13 2.41e+13 2.15e+12

Std 1.41e+12 1.56e+12 1.48e+12 1.01e+12 Std 8.58e+12 6.02e+12 6.48e+12 8.14e+11

f15 Median 1.98e+08 1.98e+08 2.00e+08 6.79e+07 f15 Median 5.93e+07 5.89e+07 5.91e+07 2.02e+07

Mean 1.98e+08 1.96e+08 2.01e+08 6.86e+07 Mean 5.90e+07 5.88e+07 5.89e+07 2.14e+07

Std 8.05e+06 1.22e+07 8.74e+06 1.54e+07 Std 4.22e+06 3.81e+06 4.29e+06 4.88e+06

f16 Median 1.51e-02 1.48e-02 1.58e-02 1.23e+05 f16 Median 1.01e+00 8.98e-01 6.86e-01 2.59e+02

Mean 2.15e-02 2.45e-02 2.65e-02 2.66e+05 Mean 1.13e+00 8.78e-01 7.29e-01 5.15e+03

Std 2.22e-02 2.73e-02 3.02e-02 3.28e+05 Std 4.19e-01 2.37e-01 2.08e-01 1.85e+04

f17 Median 3.29e+09 2.66e+09 3.31e+09 1.39e+09 f17 Median 1.48e+10 1.23e+10 2.00e+10 3.48e+02

Mean 3.80e+09 2.77e+09 3.25e+09 1.51e+09 Mean 1.54e+10 1.46e+10 2.15e+10 7.09e+02

Std 1.83e+09 6.63e+08 5.18e+08 6.35e+08 Std 7.32e+09 5.72e+09 7.27e+09 1.29e+03

f18 Median 3.24e+08 1.30e+08 3.16e+08 1.03e+10 f18 Median 4.52e+10 4.25e+10 4.74e+10 9.61e+10

Mean 4.32e+08 1.40e+08 4.46e+08 1.15e+10 Mean 7.84e+10 5.78e+10 4.85e+10 2.63e+11

Std 2.49e+08 7.19e+07 3.22e+08 6.60e+09 Std 1.05e+11 4.47e+10 1.55e+10 3.30e+11

The highlighted entries are significantly better
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Table 5 Results of SACC and standard CC algorithm with the ideal decomposition method

(a) The modified CEC-2010 test functions (b) The modified CEC-2010 test functions with normal weights

Function DECC-I SACC1 SACC2 SACC3 Function DECC-I SACC1 SACC2 SACC3

f4 Median 4.93e+11 5.78e+11 5.07e+11 3.44e+11 f4 Median 4.80e+10 3.61e+10 4.57e+10 3.43e+10

Mean 5.33e+11 5.73e+11 5.40e+11 4.01e+11 Mean 5.12e+10 4.39e+10 4.83e+10 3.62e+10

Std 2.59e+11 2.00e+11 2.84e+11 2.26e+11 Std 2.18e+10 2.20e+10 1.46e+10 1.45e+10

f5 Median 1.12e+08 1.20e+08 1.22e+08 1.06e+08 f5 Median 2.38e+04 2.07e+04 2.16e+04 1.82e+04

Mean 1.14e+08 1.21e+08 1.20e+08 1.07e+08 Mean 2.29e+04 2.11e+04 2.14e+04 1.88e+04

Std 1.87e+07 1.60e+07 1.82e+07 1.80e+07 Std 2.92e+03 2.76e+03 2.60e+03 2.35e+03

f6 Median 1.64e+01 1.63e+01 1.64e+01 1.79e+01 f6 Median 1.62e+01 1.64e+01 1.64e+01 1.75e+01

Mean 1.63e+01 1.63e+01 1.64e+01 1.78e+01 Mean 1.62e+01 1.64e+01 1.63e+01 1.74e+01

Std 3.63e-01 2.41e-01 3.31e-01 3.57e-01 Std 3.34e-01 4.56e-01 4.06e-01 3.52e-01

f7 Median 5.56e+02 4.73e+02 3.47e+02 7.87e+05 f7 Median 3.75e+00 5.75e+02 8.17e+02 7.22e+04

Mean 1.15e+03 1.04e+03 5.64e+02 7.85e+05 Mean 2.07e+01 8.01e+02 1.09e+03 7.20e+04

Std 1.67e+03 1.63e+03 8.52e+02 4.70e+04 Std 4.10e+01 7.46e+02 1.02e+03 1.07e+04

f8 Median 3.69e+02 7.48e+02 5.11e+02 9.27e+05 f8 Median 2.01e+01 1.40e+03 2.83e+02 7.42e+05

Mean 3.20e+05 2.06e+03 1.61e+05 1.36e+06 Mean 6.48e+02 2.43e+03 1.31e+03 7.41e+05

Std 1.10e+06 2.97e+03 7.97e+05 1.22e+06 Std 1.67e+03 2.43e+03 1.81e+03 4.02e+04

f9 Median 1.79e+11 1.75e+11 1.78e+11 1.44e+10 f9 Median 7.87e+10 3.82e+10 4.02e+10 3.71e+09

Mean 1.89e+11 1.77e+11 1.80e+11 1.65e+10 Mean 8.15e+10 3.70e+10 3.93e+10 3.91e+09

Std 3.70e+10 2.78e+10 4.09e+10 5.79e+09 Std 2.46e+10 8.87e+09 9.20e+09 1.18e+09

f10 Median 2.41e+07 2.43e+07 2.35e+07 8.33e+06 f10 Median 3.13e+05 2.90e+05 2.86e+05 1.15e+05

Mean 2.39e+07 2.38e+07 2.38e+07 8.61e+06 Mean 3.12e+05 2.87e+05 2.83e+05 1.11e+05

Std 1.64e+06 2.11e+06 2.26e+06 1.44e+06 Std 1.94e+04 1.56e+04 1.93e+04 1.95e+04

f11 Median 1.05e+01 9.83e+00 1.02e+01 8.97e+02 f11 Median 1.04e+01 1.00e+01 1.08e+01 1.04e+01

Mean 1.06e+01 1.01e+01 1.02e+01 1.95e+04 Mean 1.03e+01 1.02e+01 1.06e+01 1.07e+01

Std 1.04e+00 9.09e-01 1.15e+00 4.01e+04 Std 1.02e+00 8.66e-01 8.17e-01 9.71e-01

f12 Median 2.87e+06 3.22e+06 2.92e+06 4.77e+04 f12 Median 1.73e+07 3.91e+05 4.20e+05 5.21e+04

Mean 2.91e+06 3.34e+06 3.00e+06 4.80e+04 Mean 1.83e+07 3.98e+05 4.54e+05 5.18e+04

Std 1.04e+06 1.10e+06 8.21e+05 1.33e+04 Std 6.04e+06 6.80e+04 9.99e+04 1.48e+04

f13 Median 1.77e+06 1.04e+06 1.72e+06 7.17e+05 f13 Median 6.39e+06 4.65e+05 2.61e+06 1.64e+05

Mean 1.73e+06 9.48e+05 1.56e+06 8.33e+05 Mean 8.94e+06 5.23e+05 2.77e+06 9.85e+05

Std 3.99e+05 3.06e+05 5.23e+05 2.00e+05 Std 4.90e+06 3.26e+05 2.79e+06 3.03e+06

f14 Median 5.34e+12 5.01e+12 4.96e+12 3.12e+11 f14 Median 9.37e+13 2.10e+13 2.18e+13 2.21e+12

Mean 5.44e+12 5.08e+12 5.31e+12 1.40e+12 Mean 9.43e+13 2.21e+13 2.63e+13 2.31e+12

Std 1.10e+12 8.10e+11 1.16e+12 5.44e+12 Std 2.92e+13 7.96e+12 1.10e+13 8.31e+11

f15 Median 1.72e+08 1.73e+08 1.76e+08 6.84e+07 f15 Median 6.43e+07 5.63e+07 5.63e+07 1.99e+07

Mean 1.71e+08 1.71e+08 1.74e+08 6.56e+07 Mean 6.36e+07 5.61e+07 5.59e+07 2.02e+07

Std 1.21e+07 1.20e+07 1.12e+07 1.82e+07 Std 3.34e+06 3.79e+06 3.22e+06 4.95e+06

f16 Median 8.79e-09 1.32e-08 9.35e-09 5.89e+05 f16 Median 1.35e-08 1.45e-08 1.13e-08 9.32e+01

Mean 8.61e-09 1.35e-08 9.34e-09 4.66e+05 Mean 1.48e-08 1.39e-08 1.13e-08 1.40e+04

Std 1.92e-09 2.90e-09 1.60e-09 3.75e+05 Std 2.52e-09 3.63e-09 1.86e-09 3.90e+04

f17 Median 4.56e+08 4.92e+08 4.51e+08 1.18e+02 f17 Median 1.39e+11 3.67e+09 5.74e+09 7.05e+01

Mean 4.70e+08 4.85e+08 4.66e+08 2.45e+02 Mean 1.44e+11 4.23e+09 6.18e+09 1.53e+03

Std 8.80e+07 8.54e+07 7.63e+07 6.45e+02 Std 3.36e+10 1.81e+09 2.04e+09 6.39e+03

f18 Median 2.74e+07 1.85e+07 2.45e+07 1.08e+07 f18 Median 1.22e+10 6.28e+09 9.18e+09 2.52e+09

Mean 3.29e+07 2.31e+07 2.79e+07 1.42e+07 Mean 1.45e+10 8.77e+09 1.11e+10 3.64e+09

Std 1.56e+07 1.14e+07 1.11e+07 1.21e+07 Std 5.37e+09 4.65e+09 5.84e+09 4.06e+09

The highlighted entries are significantly better
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(f4, f7, and f12) and 2 (f4 and f17) functions, respectively.
The DG decomposition method constructs 33 non-separable
subcomponents on both f13 and f18; while they have 10 and
20 non-separable subcomponents, respectively. Therefore,
the poor performance of SACC3 may be due to low accu-
racy of DG decomposition on these functions. As it can be
seen from Table 4, SACC3 was effective for most test func-
tions with 10 or 20 imbalanced subcomponents; because it
has the ability of handling budget assignment.

4.2.2 Experiment series 2: results with the ideal
decomposition method

The results of CC algorithm with three proposed types of
SACC and the standard round-robin CC algorithm (DECC-
I) which use the ideal decomposition method are summa-
rized in Table 5. It can be seen from Table 5a that on the
modified CEC-2010 test functions, SACC3 is the best per-
forming algorithm and outperforms other algorithms on 10
out of 15 functions while DECC-I, SACC1, and SACC2
obtain best results for 7, 5, and 6 functions, respectively.
From Table 5b, it is obvious on the modified CEC-2010
test functions with normal weights that SACC3 as the best
algorithm outperforms other algorithms on 11 out of 15
functions while DECC-I, SACC1, and SACC2 obtain best
results for 5, 3, and 3 out of 15 functions, respectively. It
is also notable that while SACC1 and SACC2 cannot per-
form as best algorithm in comparison with all compared
algorithms on most functions, SACC1 and SACC2 out-
perform statistically DECC-I based on obtained p-values
of Holm correction on 8 (f9–f10, f12–f15, and f17–f18)
functions.

DECC-I uses all the fitness evaluations for optimiza-
tion while SACC1, SACC2, and SACC3 methods with ideal
grouping use a number of fitness evaluations (i.e.,= r(k +
1) = 20 ∗ 1001 = 20020) to identify effect of variables on
the global fitness. In addition, SACC1 and SACC2 change
the assigned budget for only the maximum subcomponent.
With the possible reasons, DECC-I can obtain the simi-
lar results compared to two types of SACC, SACC1 and
SACC2, on the modified CEC-2010 test functions. From
the result of the DG decomposition method, the results of
SACC3 is worse than the standard round-robin CC algo-
rithm on some functions, f13 and f18, in the modified CEC-
2010 test functions with normal weights. In the presence
of the ideal decomposition method, SACC3 outperforms
the standard round-robin CC algorithm on these functions.
The same behavior of the CCBC algorithms was shown
in [18, 22] that the performance of the CCBC algorithms
increases with the ideal decomposition method. Although,
in the presence of the ideal decomposition method, the per-
formance of SACC3 still decreases on two functions, f11

and f16.

From Table 5, it is clear that SACC3 cannot perform
well and may even perform worse than DECC-I on f4–
f8 function in the modified CEC-2010 test functions and
the modified CEC-2010 test functions with normal weights.
The possible reason for this behavior is that these func-
tions have one non-separable imbalanced subcomponent;
thus using a number of fitness evaluations for the budget
assignment might deteriorate the performance of DECC-I.
As a general consideration of all results, that performance
of SACC3 is either significantly better than or comparable
to the standard CC algorithm. The main reason why SACC3
performs better is that it properly considers the computa-
tional budget among subcomponents. Table 6 shows the
results of CC algorithm with three proposed types of SACC
and the standard round-robin CC algorithm (DECC-I) by

Table 6 Results of SACC and standard CC algorithm with the ideal
decomposition method for the CEC-2013 LSGO benchmark functions

Function DECC-I SACC1 SACC2 SACC3

f4 Median 4.63e+10 2.18e+10 2.51e+10 1.60e+10

Mean 4.97e+10 2.55e+10 2.59e+10 1.81e+10

Std 1.97e+10 1.07e+10 1.20e+10 8.53e+09

f5 Median 4.98e+06 4.53e+06 4.45e+06 2.35e+06

Mean 4.96e+06 4.49e+06 4.45e+06 2.33e+06

Std 3.63e+05 3.21e+05 4.66e+05 5.02e+05

f6 Median 1.38e+01 1.38e+01 1.42e+01 8.15e+04

Mean 1.20e+04 1.26e+04 1.32e+04 7.92e+04

Std 2.51e+04 2.64e+04 2.41e+04 3.62e+04

f7 Median 6.67e+07 5.53e+07 4.60e+07 1.51e+06

Mean 6.33e+07 5.67e+07 4.93e+07 1.76e+07

Std 2.36e+07 2.04e+07 2.67e+07 6.23e+07

f8 Median 5.16e+15 2.80e+15 3.12e+15 6.90e+12

Mean 4.86e+15 2.74e+15 3.06e+15 1.01e+13

Std 1.85e+15 7.83e+14 9.39e+14 8.16e+12

f9 Median 4.97e+08 4.34e+08 4.32e+08 1.43e+08

Mean 4.97e+08 4.38e+08 4.23e+08 1.67e+08

Std 3.53e+07 2.48e+07 4.22e+07 5.93e+07

f10 Median 5.28e+00 6.25e-01 3.89e+00 1.05e+02

Mean 1.64e+01 5.29e+00 8.31e+00 1.09e+02

Std 1.96e+01 8.27e+00 1.33e+01 1.70e+01

f11 Median 1.78e+09 1.56e+09 1.64e+09 1.11e+08

Mean 3.27e+09 1.76e+09 2.58e+09 1.70e+10

Std 5.11e+09 8.64e+08 2.96e+09 3.86e+10

f13 Median 9.03e+09 7.65e+09 5.47e+09 1.17e+09

Mean 8.96e+09 7.68e+09 5.89e+09 3.31e+09

Std 2.30e+09 2.83e+09 2.21e+09 3.71e+09

f14 Median 8.55e+10 7.52e+10 8.29e+10 6.08e+08

Mean 8.77e+10 7.76e+10 8.48e+10 2.81e+10

Std 2.53e+10 1.87e+10 2.25e+10 8.32e+10

The highlighted entries are significantly better
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using the ideal decomposition method on the CEC-2013
LSGO benchmark functions. From the results of Table 6,
SACC3 is the best performing algorithm and outperforms
other algorithms on 8 out of 10 functions while DECC-
I, SACC1, and SACC2 obtain best results for 2 functions.
It is also notable that while SACC1 and SACC2 perform
as the best algorithm, similar to DECC-I, but SACC1 and
SACC2 outperform statistically DECC-I based on obtained
p-values of Holm correction on 6 (f4–f5, f8–f9, f11, and
f13) and 5 (f4–f5, f8–f9, and f13) functions, respectively.
SACC1 and SACC2 methods have the same performance
in comparison with DECC-I on 2 (f6 and f10) functions.
SACC3 is very sensitive (more than SACC1 and SACC2)
to Morris method which is used to determine the effect of
the variables; because in SACC3, the Morris method should
sort subcomponents according to their effects. The possi-
ble reason of why SACC3 performs worse than SACC1,
SACC2, and DECC-I on (f6 and f10) is that Morris method

cannot correctly identify subcomponents’ effects in such
functions.

From the study of Tables 4, 5b, and 6, it is clear that
CC algorithms with the sensitivity analysis-based budget
assignment method gained much better results than the stan-
dard round-robin CC algorithm. Also, results confirmed
the advantages of sensitivity analysis budget assignment
methods when there is an imbalance feature among the
non-separable subcomponents in LSGO problems to the
global fitness. Important observation about the performance
of SACC3 is that on f4–f8, functions with one imbal-
anced subcomponent, it is less significant, but on f9–f13

and f14–f18, functions with 10 or 20 imbalanced subcom-
ponents in the modified CEC-2010 test functions and the
modified CEC-2010 test functions with normal weights,
and imbalance functions with 7 and 20 imbalanced sub-
components f4–f11 and f13–f14 in the CEC-2013 LSGO
benchmark functions, it has been concluded that it is either

Fig. 3 Convergence plots of f5, f6, f9, f11, f14, and f16 of the modified CEC-2010 test functions with normal weights. The results were averaged
over 25 runs. The vertical axis is the function value and the horizontal axis is the number of function evaluations
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significantly better than or comparable to the standard
round-robin CC algorithm for the most of these functions.
Therefore, it can be found that it is better to apply the sen-
sitivity analysis-based budget division method for CC algo-
rithms when the number of the imbalanced subcomponents
increases.

To gain a better understanding of the behavior of
algorithms, we plot the convergence graph for six sam-
ple problems (two functions from three classes of func-
tions) on the modified CEC-2010 benchmark functions
and the modified CEC-2010 test functions with normal
weights in Figs. 3 and 4, respectively. Also, the con-
vergence plots for four selected functions on the CEC-
2013 LSGO benchmark functions (two functions from two
classes of functions: functions with seven imbalanced sub-
components and functions with twenty imbalanced sub-
components) are shown in Fig. 5. In addition, to gain a

better understanding of how SACC3 can assign I ters to
subcomponents, the assigned iteration of the subcompo-
nents and their corresponding weights are plotted in Figs. 6,
7, and 8 in the modified CEC-2010 test functions with
normal weights.

4.3 Comparison of SACC3 with the contribution based
methods (CBCC1 and CBCC2)

As mentioned earlier, we have demonstrated that our pro-
posed budget division methods can improve the perfor-
mance of CC algorithms. In this section, we selected
SACC3 from three proposed sensitivity analysis-based bud-
get assignment methods to compare with CBCC1 and
CBCC2 methods proposed by Omidvar et al. [18, 22].
We performed a series of pair-wise Wilcoxon rank-sum
[32] tests at a 0.05 significance level with Holm p-value

Fig. 4 Convergence plots of f5, f6, f9, f11, f14, and f16 of the modified CEC-2010 test functions. The results were averaged over 25 runs. The
vertical axis is the function value and the horizontal axis is the number of function evaluations
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Fig. 5 Convergence plots of f5, f6, f8, and f10 of the CEC-2013 LSGO benchmark functions. The results were averaged over 25 runs. The
vertical axis is the function value and the horizontal axis is the number of function evaluations

correction to compare algorithms as mentioned above. The
results that are statistically best are marked in bold face.

4.3.1 Experiment series 1: comparison of methods along
with the DG decomposition method

The median, mean and standard deviation of the obtained
results by SACC3, CBCC1, and CBCC2 along with the
DG decomposition method on the modified CEC-2010 test
functions and the modified CEC-2010 test functions with
normal weights are summarized in Table 7. On the modified

CEC-2010 test functions with normal weights, Table 7a
indicates that SACC3 is the best performing algorithm and
outperforms other algorithms on 8 out of 15 functions while
CCBC1 and CCBC2 obtain best results for 6 and 5 out of
15 functions, respectively. From Table 7b, on the modified
CEC-2010 test functions, SACC3 as the best algorithm out-
performs other algorithms on 9 out of 15 functions while
CCBC1 and CCBC2 obtain best results for 4 and 7 out
of 15 functions, respectively. The possible reason for poor
behavior of SACC3 on f18 and f16 is because of a large
number of subcomponents which are constructed by DG
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Fig. 6 The assigned iteration
for f9–f13 in the modified
CEC-2010 test functions. The
coefficients of subcomponents
are included in the columns of
the plot

Fig. 7 The assigned iteration for f14–f16 in the modified CEC-2010 test functions. The coefficients of subcomponents are included in the
columns of the plot

Fig. 8 The assigned iteration for f17–f18 in the modified CEC-2010 test functions. The coefficients of subcomponents are included in the
columns of the plot
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Table 7 Results of SACC3 and contribution based CC algorithm with the DG decomposition method

(a) The modified CEC-2010 test functions with normal weights The modified CEC-2010 test functions

Function CBCC1 CBCC2 SACC3 Function CBCC1 CBCC2 SACC3

f4 Median 2.72e+11 2.73e+11 7.96e+10 f4 Median 2.06e+12 1.89e+12 9.40e+10

Mean 2.92e+11 3.01e+11 8.32e+10 Mean 2.21e+12 1.95e+12 9.57e+10

Std 1.07e+11 1.72e+11 3.17e+10 Std 5.24e+11 6.22e+11 3.13e+10

f5 Median 2.06e+04 2.02e+04 1.88e+04 f5 Median 1.21e+08 1.16e+08 9.72e+07

Mean 2.08e+04 2.05e+04 1.96e+04 Mean 1.20e+08 1.14e+08 9.94e+07

Std 1.99e+03 3.54e+03 2.49e+03 Std 2.03e+07 1.94e+07 1.77e+07

f6 Median 1.63e+01 1.64e+01 1.71e+01 f6 Median 1.65e+01 1.65e+01 1.79e+01

Mean 1.63e+01 1.63e+01 1.71e+01 Mean 1.65e+01 1.64e+01 1.79e+01

Std 3.69e-01 3.79e-01 3.12e-01 Std 3.69e-01 3.00e-01 2.78e-01

f7 Median 1.59e+02 5.46e+02 6.76e+04 f7 Median 5.24e+00 7.05e-01 3.59e+04

Mean 4.55e+02 1.22e+03 6.97e+04 Mean 8.54e+03 1.76e+03 3.48e+04

Std 7.89e+02 1.42e+03 1.41e+04 Std 3.01e+04 8.82e+03 8.80e+03

f8 Median 7.36e+04 1.15e+04 3.42e+05 f8 Median 1.39e+06 2.83e+04 2.65e+06

Mean 1.04e+05 3.06e+04 6.14e+05 Mean 7.17e+06 1.91e+05 2.08e+06

Std 1.63e+05 4.16e+04 4.65e+05 Std 2.09e+07 7.93e+05 1.76e+06

f9 Median 1.14e+11 1.28e+11 4.32e+10 f9 Median 2.66e+11 2.39e+11 1.41e+10

Mean 1.22e+11 1.31e+11 5.28e+10 Mean 2.75e+11 2.56e+11 1.51e+10

Std 5.03e+10 5.18e+10 3.05e+10 Std 4.42e+10 6.29e+10 5.12e+09

f10 Median 3.08e+05 3.00e+05 1.21e+05 f10 Median 2.69e+07 2.78e+07 9.65e+06

Mean 3.03e+05 3.00e+05 1.22e+05 Mean 2.78e+07 2.80e+07 9.55e+06

Std 1.78e+04 1.93e+04 2.20e+04 Std 2.22e+06 1.88e+06 1.60e+06

f11 Median 1.03e+01 1.08e+01 1.09e+01 f11 Median 1.06e+01 1.01e+01 1.69e+01

Mean 1.03e+01 1.10e+01 1.09e+01 Mean 1.41e+01 1.02e+01 1.79e+01

Std 6.92e-01 9.07e-01 7.70e-01 Std 1.74e+01 9.10e-01 3.06e+00

f12 Median 1.58e+07 1.33e+07 1.79e+02 f12 Median 4.45e+07 3.91e+07 1.91e+06

Mean 1.74e+07 1.44e+07 4.02e+02 Mean 5.04e+07 4.63e+07 3.18e+06

Std 4.23e+06 5.86e+06 4.57e+02 Std 2.75e+07 2.13e+07 3.68e+06

f13 Median 1.06e+07 1.02e+07 2.40e+07 f13 Median 1.06e+07 1.09e+07 1.17e+07

Mean 1.61e+07 1.42e+07 7.96e+07 Mean 1.02e+07 1.08e+07 1.15e+07

Std 9.02e+06 7.19e+06 1.20e+08 Std 4.18e+06 5.03e+06 6.62e+06

f14 Median 2.54e+13 2.27e+13 2.00e+12 f14 Median 6.10e+12 6.06e+12 4.03e+12

Mean 2.45e+13 2.14e+13 2.15e+12 Mean 6.35e+12 6.13e+12 4.50e+12

Std 6.46e+12 7.76e+12 8.14e+11 Std 1.39e+12 1.42e+12 1.01e+12

f15 Median 5.99e+07 6.02e+07 2.02e+07 f15 Median 1.98e+08 2.00e+08 6.79e+07

Mean 5.97e+07 5.91e+07 2.14e+07 Mean 1.96e+08 2.01e+08 6.86e+07

Std 3.88e+06 3.67e+06 4.88e+06 Std 1.16e+07 8.82e+06 1.54e+07

f16 Median 5.92e-01 8.74e-01 2.59e+02 f16 Median 1.48e-02 1.48e-02 1.23e+05

Mean 6.04e-01 1.64e+01 5.15e+03 Mean 2.11e-02 1.83e-02 2.66e+05

Std 1.30e-01 7.79e+01 1.85e+04 Std 2.59e-02 1.83e-02 3.28e+05

f17 Median 2.21e+10 1.54e+10 3.48e+02 f17 Median 2.93e+09 3.03e+09 1.39e+09

Mean 2.34e+10 1.66e+10 7.09e+02 Mean 4.20e+09 3.94e+09 1.51e+09

Std 7.40e+09 6.89e+09 1.29e+03 Std 2.00e+09 1.57e+09 6.35e+08

f18 Median 4.96e+10 4.34e+10 9.61e+10 f18 Median 4.72e+08 1.11e+08 1.03e+10

Mean 9.64e+10 1.06e+11 2.63e+11 Mean 5.36e+08 1.51e+08 1.15e+10

Std 1.70e+11 1.93e+11 3.30e+11 Std 3.85e+08 9.85e+07 6.60e+09

The highlighted entries are significantly better
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Table 8 Results of SACC3 and contribution based CC algorithm with the ideal decomposition method

(a) The modified CEC-2010 test functions with normal weights The modified CEC-2010 test functions

Function CBCC1 CBCC2 SACC3 Function CBCC1 CBCC2 SACC3

f4 Median 4.61e+10 3.96e+10 3.43e+10 f4 Median 5.70e+11 6.39e+11 3.44e+11

Mean 4.76e+10 4.74e+10 3.62e+10 Mean 5.77e+11 6.49e+11 4.01e+11

Std 2.08e+10 2.37e+10 1.45e+10 Std 2.51e+11 3.03e+11 2.26e+11

f5 Median 2.07e+04 1.89e+04 1.82e+04 f5 Median 1.14e+08 1.18e+08 1.06e+08

Mean 2.02e+04 1.96e+04 1.88e+04 Mean 1.16e+08 1.17e+08 1.07e+08

Std 2.57e+03 2.69e+03 2.35e+03 Std 1.16e+07 2.01e+07 1.80e+07

f6 Median 1.63e+01 1.61e+01 1.75e+01 f6 Median 1.65e+01 1.65e+01 1.79e+01

Mean 1.63e+01 1.62e+01 1.74e+01 Mean 1.64e+01 1.65e+01 1.78e+01

Std 3.10e-01 3.38e-01 3.52e-01 Std 3.56e-01 2.52e-01 3.57e-01

f7 Median 3.27e+02 6.08e+02 7.22e+04 f7 Median 3.33e+02 7.61e+02 7.87e+05

Mean 9.52e+02 9.80e+02 7.20e+04 Mean 1.20e+03 1.35e+03 7.85e+05

Std 1.23e+03 1.06e+03 1.07e+04 Std 1.59e+03 1.80e+03 4.70e+04

f8 Median 3.33e+02 9.41e+02 7.42e+05 f8 Median 4.04e+02 9.27e+05 4.21e+02

Mean 1.12e+03 1.95e+03 7.41e+05 Mean 3.20e+05 1.36e+06 1.03e+03

Std 1.68e+03 2.33e+03 4.02e+04 Std 1.11e+06 1.22e+06 1.23e+03

f9 Median 3.75e+10 3.65e+10 3.71e+09 f9 Median 1.90e+11 1.63e+11 1.44e+10

Mean 3.92e+10 3.96e+10 3.91e+09 Mean 1.88e+11 1.75e+11 1.65e+10

Std 1.27e+10 1.24e+10 1.18e+09 Std 4.35e+10 3.14e+10 5.79e+09

f10 Median 2.81e+05 2.84e+05 1.15e+05 f10 Median 2.26e+07 2.35e+07 8.33e+06

Mean 2.83e+05 2.83e+05 1.11e+05 Mean 2.31e+07 2.39e+07 8.61e+06

Std 1.79e+04 1.55e+04 1.95e+04 Std 2.51e+06 2.11e+06 1.44e+06

f11 Median 1.01e+01 1.09e+01 1.04e+01 f11 Median 1.02e+01 1.04e+01 8.97e+02

Mean 1.03e+01 1.06e+01 1.07e+01 Mean 1.04e+01 1.03e+01 1.95e+04

Std 1.03e+00 1.08e+00 9.71e-01 Std 9.68e-01 8.10e-01 4.01e+04

f12 Median 3.55e+05 3.69e+05 5.21e+04 f12 Median 2.83e+06 2.96e+06 4.77e+04

Mean 3.81e+05 3.84e+05 5.18e+04 Mean 2.95e+06 3.76e+06 4.80e+04

Std 9.10e+04 9.03e+04 1.48e+04 Std 9.48e+05 3.43e+06 1.33e+04

f13 Median 2.53e+06 3.77e+05 1.64e+05 f13 Median 1.36e+06 1.06e+06 7.17e+05

Mean 2.14e+06 5.62e+05 9.85e+05 Mean 1.44e+06 1.09e+06 8.33e+05

Std 1.08e+06 4.85e+05 3.03e+06 Std 5.42e+05 3.37e+05 2.00e+05

f14 Median 2.66e+13 2.17e+13 2.21e+12 f14 Median 5.61e+12 5.35e+12 3.12e+11

Mean 2.62e+13 2.18e+13 2.31e+12 Mean 6.96e+12 5.99e+12 1.40e+12

Std 9.01e+12 4.93e+12 8.31e+11 Std 2.92e+12 2.74e+12 5.44e+12

f15 Median 5.58e+07 5.48e+07 1.99e+07 f15 Median 1.74e+08 1.73e+08 6.84e+07

Mean 5.61e+07 5.55e+07 2.02e+07 Mean 1.72e+08 1.71e+08 6.56e+07

Std 3.73e+06 4.50e+06 4.95e+06 Std 1.36e+07 1.34e+07 1.82e+07

f16 Median 1.13e-08 1.21e-08 9.32e+01 f16 Median 7.84e-09 9.69e-09 5.89e+05

Mean 1.12e-08 1.29e-08 1.40e+04 Mean 7.75e-09 1.06e-08 4.66e+05

Std 1.07e-09 5.26e-09 3.90e+04 Std 1.56e-09 3.35e-09 3.75e+05

f17 Median 6.38e+09 3.28e+09 7.05e+01 f17 Median 5.39e+08 4.47e+08 1.18e+02

Mean 6.50e+09 3.97e+09 1.53e+03 Mean 7.73e+08 5.92e+08 2.45e+02

Std 1.94e+09 1.96e+09 6.39e+03 Std 3.76e+08 3.26e+08 6.45e+02

f18 Median 7.84e+09 6.39e+09 2.52e+09 f18 Median 2.65e+07 1.93e+07 1.08e+07

Mean 9.87e+09 9.23e+09 3.64e+09 Mean 3.28e+07 2.24e+07 1.42e+07

Std 4.17e+09 4.88e+09 4.06e+09 Std 1.52e+07 1.00e+07 1.21e+07

The highlighted entries are significantly better



Cooperative co-evolution with sensitivity analysis-based budget assignment strategy...

decomposition method as mentioned above. The perfor-
mance of SACC3 deteriorates on the most of functions
with one non-separable subcomponent, as mentioned in
Section 4.2, but when there are the several non-separable
subcomponents with the different imbalances, its results are
better than CBCC1 and CBCC2 due to not only considering
subcomponent with maximum effect, but also considering
all subcomponents’ effects.

4.3.2 Experiment series 2: comparison of methods along
with the ideal decomposition method

Table 8 shows the obtained results of SACC3, CBCC1, and
CBCC2 which use the ideal decomposition method. On the
modified CEC-2010 test functions with normal weights,
Table 8a indicates SACC3 is the best performing algorithm
and outperforms other algorithms on 11 out of 15 functions
while CCBC1 and CCBC2 obtain best results for 7 out of
15 functions. It can be seen from Table 8b on the modified
CEC-2010 test functions that SACC3 has the best perfor-
mance among other algorithms on 11 out of 15 functions
while CCBC1 and CCBC2 have the best performance on
6 and 4 out of 15 functions, respectively. Table 9 shows
the results of CC algorithm with SACC3, CBCC1, and
CBCC2 by using the ideal decomposition method on the
CEC-2013 LSGO benchmark functions. From Table 9, it
is seen SACC3 is the best performing algorithm and out-
performs other algorithms on 8 out of 10 functions while
CCBC1 and CCBC2 obtain best results for 2 out of 10 func-
tions. From the study of Tables 8 and 9, we can conclude
that the performance of SACC3 is either significantly better
than or comparable to CBCC1 and CBCC2. An impor-
tant observation from the results of all tables is that as the
number of imbalanced subcomponent increases (f9–f13 and
f14–f18) in the modified CEC-2010 test functions and the
modified CEC-2010 test functions with normal weights, and
imbalance functions f4–f11 and f13–f14 in the CEC-2013
LSGO benchmark functions, the performance of SACC3
also improves and outperforms CBCC1 and CBCC2. It is
noteworthy that the performance of SACC3 increases sig-
nificantly according to Tables 8 and 9 when decomposition
method can obtain a near optimal grouping of the deci-
sion variables. An important reason of the ability SACC3
to find better solutions is that it can allocate computa-
tional resources to all subcomponents well according their
main effect of the global fitness value. To gain a better
understanding of the behavior of algorithms, we plot the
convergence graph on six selected problems (two functions
from three classes of functions) on the modified CEC-2010
benchmark functions and the modified CEC-2010 test func-
tions with normal weights in Figs. 9 and 10, respectively.
Also, the convergence plots for four selected functions on

Table 9 Results of SACC3 and contribution based CC algorithm with
the ideal decomposition method for the CEC-2013 LSGO benchmark
functions

Function CBCC1 CBCC2 SACC3

f4 Median 2.60e+10 2.37e+10 1.60e+10

Mean 2.60e+10 2.76e+10 1.81e+10

Std 1.31e+10 1.43e+10 8.53e+09

f5 Median 4.40e+06 4.39e+06 2.35e+06

Mean 4.42e+06 4.40e+06 2.33e+06

Std 4.56e+05 4.24e+05 5.02e+05

f6 Median 1.43e+01 1.43e+01 8.15e+04

Mean 4.07e+03 1.44e+04 7.92e+04

Std 1.41e+04 3.13e+04 3.62e+04

f7 Median 4.30e+07 5.22e+07 1.51e+06

Mean 4.58e+07 5.46e+07 1.76e+07

Std 2.37e+07 2.49e+07 6.23e+07

f8 Median 2.65e+15 2.29e+15 1.12e+13

Mean 2.87e+15 2.48e+15 1.15e+13

Std 1.15e+15 9.83e+14 5.78e+12

f9 Median 4.30e+08 4.23e+08 1.43e+08

Mean 4.30e+08 4.28e+08 1.67e+08

Std 2.28e+07 4.06e+07 5.93e+07

f10 Median 4.11e+00 3.65e+00 1.11e+02

Mean 1.44e+01 8.88e+00 1.06e+02

Std 1.84e+01 1.05e+01 1.68e+01

f11 Median 1.73e+09 1.76e+09 1.11e+08

Mean 2.76e+09 2.25e+09 1.70e+10

Std 2.56e+09 1.97e+09 3.86e+10

f13 Median 9.57e+09 7.76e+09 1.17e+09

Mean 8.85e+09 8.46e+09 3.31e+09

Std 3.06e+09 2.99e+09 3.71e+09

f14 Median 6.87e+10 6.80e+10 6.08e+08

Mean 7.25e+10 7.35e+10 2.81e+10

Std 2.78e+10 3.16e+10 8.32e+10

The highlighted entries are significantly better

the CEC-2013 LSGO benchmark functions is shown in
Fig. 11.

4.4 Comparison among all SACC methods and other
three algorithms with multiple tests

4.4.1 Wilcoxon’s test

Besides the all above experiments, we also conduct
Wilcoxon’s test to detect significant differences between
the behaviors of algorithms. Each version of the SACC
algorithms is compared with the standard round-robin CC,
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Fig. 9 Convergence plots of f5, f6, f9, f11, f14, and f16 of the modified CEC-2010 test functions. The results were averaged over 25 runs. The
vertical axis is the function value and the horizontal axis is the number of function evaluations

CBCC1, and CBCC2. Tables 10, 11, 12, 13, and 14 show
the ranks and p-values of Wilcoxon test between each ver-
sion of the SACC algorithms and other three algorithms
with the various decomposition methods. A plus sign ‘+’
indicates that SACC algorithms statistically perform bet-
ter than other algorithms at significance level 5%, whereas
a similarity sign ‘∼’ means that no significant differences
were detected. From the Tables 10 and 11a, it can be
seen that SACC3 is significantly better than other algo-
rithms with the ideal decomposition methods. We observe
that the rank values corresponding to SACC3 are always
greater than other algorithms in the various decomposi-
tion methods. Also, from the Tables 11b and 12 it can be
seen that SACC2 is significantly better than the standard
round-robin CC algorithm with the ideal decomposition
method while both algorithms have no significant differ-
ences with the DG decomposition method. The Wilcoxon
Signed-Rank test indicates that SACC2 and two versions of

CCBC have no significant differences except that SACC2
is significantly better than CBCC1 along with the DG
decomposition method. From the Tables 13 and 14, we can
observe that SACC1 is significantly better than other algo-
rithms on most cases and the rank values corresponding to
SACC1 are always greater than other algorithms with every
decomposition method. In addition, the Wilcoxon Signed-
Rank test is conducted to detect significant differences
between the different versions of SACC. Tables 15 and 16
show the ranks and p-values of Wilcoxon test between
versions of SACC algorithm. From the Table 15, we
can observe that SACC3 is significantly better than both
SACC1 and SACC2 algorithms with the ideal decomposi-
tion method and the rank values corresponding to SACC3
are always greater than SACC1 and SACC2 algorithms with
every decomposition method. From the Table 16, we can
observe that SACC1 is significantly better than SACC2 with
the DG decomposition method.
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Fig. 10 Convergence plots of f5, f6, f9, f11, f14, and f16 of the modified CEC-2010 test functions with normal weights. The results were
averaged over 25 runs. The vertical axis is the function value and the horizontal axis is the number of function evaluations

4.4.2 Multiple friedman aligned comparisons
with a control method

In addition, Friedman Aligned test and post-hoc procedure
are conducted to compare algorithms [6]. The CON-
TROLTEST software package [5, 8, 9] is used to com-
pute p-values, ranks, and adjusted p-values of these test.
Table 17 shows the ranks and related p-values of the
Friedman Aligned tests. As we can see from Table 17,
the best performing algorithm in the comparison of all
algorithms with the DG decomposition method for the
Friedman Aligned test is SACC3 (63.233). The p-value
computed through the statistics of the Friedman Aligned
test is 2.530e-4 which indicates the existence of significant
differences among the compared algorithms. It is obvious
from Table 17 that in the comparison of all algorithms
with the ideal decomposition method, the best performing
algorithm by Friedman Aligned test is SACC3 (72.988).

The p-value computed through the statistics of the Fried-
man Aligned test is 7.351e-6. The statistic test confirms
significant differences among compared algorithms and
indicates that ranks assigned to SACC3 are the best rank.
Tables 18 and 19 indicate the eight posthoc procedures (i.e.,
Bonf , Holm, Hoch, Homm, Holl, Rom, Finn, and Li

tests) using the ranks of Friedman Aligned test. In posthoc
procedures, the best performing algorithm is highlighted
as control algorithm (SACC3) and then all hypotheses of
equality among control algorithm and all compared algo-
rithms by computing p-values. For the DG decomposition
method, as we can see in Table 18, the Friedman Aligned
test confirms the improvement of SACC3 over DECC,
CBCC1, and CBCC2 for every post-hoc procedure while
it indicates that it behaves similarly with SACC1 and
SACC2. Table 19 indicates that for the ideal decomposi-
tion method, a significant improvement of SACC3 over all
algorithms.
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Fig. 11 Convergence plots of
f5, f6, f8, and f10 of the
CEC-2013 LSGO benchmark
functions. The results were
averaged over 25 runs. The
vertical axis is the function value
and the horizontal axis is the
number of function evaluations

Table 10 Wilcoxon test

Decomposition method DG ideal

(a) Wilcoxon test between SACC3 and DECC

SACC3.Ranks 322 699

DECC.Ranks 143 121

p-value 0.06576 0.0001

Results at the 5% significance level ∼ +
(b) Wilcoxon test between SACC3 and CBCC1

SACC3.Ranks 335 690

CBCC1.Ranks 130 130

p-value 0.03486 0.00016

Results at the 5 % significance level + +

Table 11 Wilcoxon test

Decomposition method DG ideal

(a) Wilcoxon test between SACC3 and CBCC2

SACC3.Ranks 323 672

CBCC2.Ranks 142 148

p-value 0.06288 0.00044

Results at the 5 % significance level ∼ +
(b) Wilcoxon test between SACC2 and DECC

SACC2.Ranks 238 689

DECC.Ranks 113 131

p-value 0.11184 0.00018

Results at the 5 % significance level ∼ +
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Table 12 Wilcoxon test

Decomposition method DG ideal

(a) Wilcoxon test between SACC2 and CBCC1

SACC2.Ranks 367.5 330.5

CBCC1.Ranks 97.5 372.5

p-value 0.00544 0.74896

Results at the 5 % significance level + ∼
(b) Wilcoxon test between SACC2 and CBCC2

SACC2.Ranks 181.5 298

CBCC2.Ranks 224.5 443

p-value 0.62414 0.29372

Results at the 5 % significance level ∼ ∼

Table 13 Wilcoxon test between SACC1 and DECC

Decomposition method DG ideal

(a) Wilcoxon test between SACC1 and DECC

SACC1.Ranks 401 618

DECC.Ranks 5 123

p-value 0 0.00034

Results at the 5 % significance level + +
(b) Wilcoxon test between SACC1 and CBCC1

SACC1.Ranks 377 557.5

CBCC1.Ranks 29 222.5

p-value 8e-05 0.01928

Results at the 5 % significance level + +

Table 14 Wilcoxon test between SACC1 and CBCC2

Decomposition method DG ideal

SACC1.Ranks 282.5 403.5

CBCC2.Ranks 182.5 376.5

p-value 0.30302 0.8493

Results at the 5 % significance level ∼ ∼

Table 15 Wilcoxon test

Decomposition method DG ideal

(a) Wilcoxon test between SACC3 and SACC1

SACC3.Ranks 321 672

SACC1.Ranks 144 148

p-value 0.06876 0.00044

Results at the 5 % significance level ∼ +
(b) Wilcoxon test between SACC3 and SACC2

SACC3.Ranks 321 650

SACC2.Ranks 144 170

p-value 0.06876 0.00017

Results at the 5 % significance level ∼ +

Table 16 Wilcoxon test between SACC1 and SACC2

Decomposition method DG ideal

SACC1.Ranks 294 529.5

SACC2.Ranks 112 250.5

p-value 0.03846 0.05118

Results at the 5 % significance level + ∼

Table 17 Ranks and p-values achieved by the friedman aligned test

Algorithm Friedman aligned

Decomposition method DG ideal

DECC 104.850 154.363

SACC1 79.233 119.562

SACC2 90.217 125.75

SACC3 63.233 72.988

CBCC1 105.783 129.588

CBCC2 99.683 120.750

p-value 2.530e-4 7.351e-6
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Table 18 Adjusted p-values for the Friedman Aligned test (SACC3 is the control algorithm) for the DG decomposition method

i algorithm unadjusted p pBonf pHolm pHoch pHomm pHoll pRom pFinn pLi

1 CBCC1 0.002 0.008 0.008 0.008 0.006 0.008 0.007 0.008 0.002

2 DECC 0.002 0.010 0.008 0.008 0.008 0.008 0.008 0.008 0.003

3 CBCC2 0.007 0.034 0.0208 0.020 0.020 0.020 0.020 0.011 0.009

4 SACC2 0.045 0.224 0.090 0.090 0.090 0.088 0.090 0.056 0.055

5 SACC1 0.234 1.172 0.234 0.234 0.234 0.234 0.234 0.234 0.234

5 Conclusions and future directions

In this paper, we proposed a CC algorithm with a sensitiv-
ity analysis-based budget assignment method to tackle the
imbalanced LSGO problems. The Morris screening method
has been incorporated into the CC algorithm to enhance
its ability for handling the imbalanced large-scale prob-
lems. In SACC, first the main effect of each variable is
computed by using Morris screening method and then the
main effect of each subcomponent is calculated based on
the main effect of its variables. SACC1 and SACC2 con-
sider only the subcomponent with the maximum main effect
after each cycle of the CC algorithm. This subcomponent
is optimized at one iteration in SACC1 and SACC2 opti-
mizes it until the best obtained solution can be improved.
In SACC3, a special number of the computational bud-
gets is assigned to all subcomponents according to their
main effect. In SACC, the associated optimization itera-
tions of all subcomponents are based on their main effect
of the global fitness value at each cycle of the CC algo-
rithm. Experimental results confirmed that SACC is more
efficient to assign budget among all subcomponents if the
accuracy of decomposition method will be high or near opti-
mal decomposition method. The performance of SACC was
evaluated on two different modified CEC-2010 and CEC-
2013 LSGO benchmark functions. The experimental results
showed that SACC is very effective and efficient in tack-
ling high-dimensional problems including more imbalanced
subcomponents. Also, we demonstrated that a proper bud-
get assignment method can greatly enhance the performance
of CC algorithms on the imbalanced LSGO problems.
Furthermore, SACC was compared with the standard CC

algorithms and contribution-based CC algorithms. The per-
formance of SACC is superior to or at least competitive with
the compared methods. In the future, we are planning to
examine other sensitivity analysis methods to better capture
the effect of various subcomponents on the global fitness,
especially on the CEC-2013 LSGO benchmark functions
which sensitivity analysis methods can hardly approximate
effect of variables on these functions. In addition, we are
interested in considering the effect of the dimension size of
the subcomponents to have a better budget assignment.
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Appendix

Tables 20, 21, and 22 present the normal coefficient corre-
sponding to non-separable subcomponents in the modified
CEC-2010 test functions with normal weights.

Table 20 The normal coefficients for single-group m-nonseparable
functions (f4–f8)

Function f4 f5 f6 f7 f8

Group1 7.78e+04 1.42e+02 3.86e+02 2.93e+01 1.27e+03

Table 19 Adjusted p-values for the Friedman Aligned test (SACC3 is the control algorithm)for the ideal decomposition method

i algorithm unadjusted p pBonf pHolm pHoch pHomm pHoll pRom pFinn pLi

1 DECC-I 1.590e-7 7.950e-7 7.950e-7 7.950e-7 7.950e-7 7.950e-7 7.560e-7 7.950e-7 1.594e-7

2 CBCC1 2.664e-4 0.001 0.001 0.001 0.001 0.001 0.001 6.660e-4 2.671e-4

3 SACC2 6.770e-4 0.003 0.002 0.002 0.002 0.002 0.002 0.001 6.784e-4

4 CBCC2 0.002 0.010 0.004 0.003 0.003 0.004 0.003 0.003 0.002

5 SACC1 0.003 0.013 0.004 0.003 0.003 0.004 0.003 0.003 0.003
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Table 21 The normal coefficients for n
2m

-group m-nonseparable func-
tions (f9–f13)

Function f9 f10 f11 f12 f13

Group1 6.05e+01 3.96e+00 6.11e+01 1.89e+00 3.12e-01

Group2 2.77e-07 2.73e-05 1.38e+03 1.55e+05 2.21e-01

Group3 1.00e-04 6.70e-03 2.55e-01 1.49e-02 4.21e+01

Group4 4.75e-05 1.66e-02 9.62e+00 6.15e-03 1.47e+01

Group5 1.61e+01 1.60e+01 1.93e-01 5.63e-06 1.79e+02

Group6 2.57e+04 6.71e+02 4.88e+00 5.39e+02 2.16e+05

Group7 1.05e-01 7.97e+00 2.09e+01 3.99e+02 4.67e+03

Group8 2.74e+02 7.60e-02 1.41e-02 5.76e-01 1.41e-04

Group9 4.33e+01 2.80e+02 6.68e+00 4.96e+02 1.03e-07

Group10 7.00e-04 2.49e+02 6.36e+01 3.56e+00 5.08e+02

Table 22 The normal coefficients for n
m

-group m-nonseparable func-
tions (f14–f18)

Function f14 f15 f16 f17 f18

Group1 3.11e-06 7.13e+02 2.83e+02 1.14e-02 2.99e-01

Group2 1.59e+00 5.06e-02 2.95e+01 7.11e+07 3.61e-02

Group3 1.28e+00 8.85e+01 1.98e+02 4.50e+01 3.24e+02

Group4 3.48e+07 8.31e-02 2.16e+02 7.63e+00 4.12e+07

Group5 6.20e-01 1.31e+02 3.62e-05 4.64e-03 1.07e-04

Group6 4.00e+01 1.77e+04 4.18e+01 6.39e-04 2.43e+00

Group7 5.10e+00 1.54e-05 5.31e-01 4.95e-06 4.71e-05

Group8 5.46e+00 1.22e+03 5.24e-03 5.39e-02 8.08e+03

Group9 1.62e+00 2.37e+04 8.30e-03 6.93e-04 1.70e+04

Group10 1.49e-02 1.39e+00 6.99e+03 8.78e+01 1.03e-05

Group11 2.15e-04 1.73e+05 3.72e-03 1.11e-01 6.78e+05

Group12 8.90e+00 2.93e+00 1.95e-04 2.03e+05 5.57e-04

Group13 9.36e-05 1.94e-04 4.41e+00 3.40e+04 4.79e+00

Group14 8.01e-04 2.63e-07 1.08e+06 3.10e+00 1.98e+03

Group15 9.85e+03 9.99e-02 1.19e+00 1.42e-01 2.76e+00

Group16 5.54e-02 1.38e+02 8.41e+00 2.86e+03 7.71e+06

Group17 3.79e-01 8.96e+00 1.53e-03 3.63e-04 1.81e+08

Group18 5.01e+02 1.74e+01 1.05e+05 1.05e+02 2.60e+00

Group19 1.26e-01 1.86e-02 2.37e+00 9.83e-03 1.90e-06

Group20 1.22e+03 2.70e+00 3.89e+01 6.30e-02 8.04e-02
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