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Abstract— This paper presents a novel Differential Evolution
(DE) algorithm, called DE enhanced by neighborhood search
(DENS), which differs from pervious works of utilizing the
neighborhood search in DE, such as DE with neighborhood
search (NSDE) and self-adaptive DE with neighborhood search
(SaNSDE). In DENS, we focus on searching the neighbors
of individuals, while the latter two algorithms (NSDE and
SaNSDE) work on the adaption of the control parameters F
and CR. The proposed algorithm consists of two following main
steps. First, for each individual, we create two trial individuals
by local and global neighborhood search strategies. Second, we
select the fittest one among the current individual and the two
created trial individuals as a new current individual. Experi-
mental studies on a comprehensive set of benchmark functions
show that DENS achieves better results for a majority of test
cases, when comparing with some other similar evolutionary
algorithms.

Index Terms— Differential evolution, neighborhood search,
local search, global optimization.

I. INTRODUCTION

Differential Evolution (DE), proposed by Price and Storn
[1], is an effective, robust, and simple global optimization
algorithm. According to frequently reported experimental
studies, DE has shown better performance than many other
evolutionary algorithm (EAs) in terms of convergence speed
and robustness over several benchmark functions and real-
world problems [2].

Since the development of DE, many improved versions
have been proposed. Based on the improved mechanisms,
we can divide them into three categories as follows.

1) Adaptive Parameter Control: The classical DE algo-
rithm only has three control parameters Np (population
size), CR and F , which greatly affect performance of
DE. The values of these parameters highly determine
the quality of the obtained solution and the efficiency
of the search [3]. Choosing appropriate parameter val-
ues is a problem dependent task and requires previous
experience and knowledge of the user. To tackle this
problem, some adaptive parameter control strategies
have been proposed, such as fuzzy DE (FADE) [4]
self-adaptive DE (SaDE) [5], [6], self-adapting control
parameters in DE (jDE) [3], DE with neighborhood
search (NSDE) [7] and self-adaptive DE with neigh-
borhood search (SaNSDE) [8].
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2) Modified Mutation Strategies: The DE algorithm has
two important operators (besides the selection), muta-
tion and crossover. The former is determined by the
mutation strategies, and the latter is dominated by
the crossover probability CR and crossover strategy.
Besides the improvement of the control parameters,
some modifications of the mutation strategies could
also improve the performance of DE. DE/current-to-
pbest [9] and DE/target-to-best/1 [10] are some exam-
ples among others.

3) Hybrid Strategies: Recently, some new works have
been introduced by combining the classical DE with
the concepts of machine learning and some successful
search techniques. These new improved DE variants
are called hybrid DE, such as opposition-based DE
(ODE) [11], [12], [13], [14], DE with adaptive local
search (DEahcSPX) [15], and DE based on generalized
opposition-based learning (GODE) [16].

In this paper, we present a novel DE algorithm, called DE
enhanced by neighborhood search (DENS), to improve the
performance of the standard DE. In order to verify the perfor-
mance of DENS, current work provides a comparative study
of DENS and other similar DE variants on a comprehensive
set of benchmark functions.

The rest of the paper is organized as follows. In Section II,
the classical DE algorithm is briefly reviewed. The proposed
approach, DENS, is presented in Section III. In Section IV,
the test functions, parameter settings and the comparison of
DENS with other similar algorithms are provided. Finally,
the work is summarized and concluded in Section V.

II. A BRIEF REVIEW OF DIFFERENTIAL EVOLUTION

DE is a population-based stochastic search algorithm, and
has been successfully applied to solve complex problems
including linear and nonlinear, unimodal and multimodal
functions. It has been investigated that DE is faster and more
robust on majority of functions than many other evolutionary
algorithms [2].

There are several variants of DE [1], where the most
popular variant is indicated by “DE/rand/1/bin” which
is called classical version. The proposed algorithm is
also based on this DE scheme. Let us assume that
Xi,G(i = 1, 2, . . . , Np) is the ith individual in population
P (G), where Np is the population size, G is the generation
index, and P (G) is the population in the Gth generation.
The main idea of DE is to generate trial vectors. Mutation
and crossover are used to produce new trial vectors,
and selection determines which of the vectors will be
successfully selected into the next generation.
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Mutation–For each vector Xi,G in generation G, a mutant
vector V is generated by

Vi,G = Xi1,G + F (Xi2,G − Xi3,G) , (1)

i �= i1 �= i2 �= i3,

where i = 1, 2, . . . , Np and i1, i2, and i3 are mutually
different random integer indices within {1, 2, · · · , Np}. The
population size Np should be satisfied by Np ≥ 4 because
i, i1, i2, and i3 are different. F ∈ [0, 2] is a real number
that controls the amplification of the difference vector
(Xi2,G − Xi3,G).

Crossover–Similar to genetic algorithms, DE also em-
ploys a crossover operator to build trial vectors by recom-
bining two different vectors. The trial vector is defined as
follows:

Ui,G = (Ui,1,G, Ui,2,G, . . . , Ui,D,G) , (2)

where j = 1, 2, . . . ,D and

Ui,j,G =
{

Vi,j,G, if randj(0, 1) ≤ CR ∨ j = l
Xi,j,G, otherwise

. (3)

CR ∈ (0, 1) is the predefined crossover probability, and
randj(0, 1) is a random number within [0, 1] for the jth
dimension, and l ∈ {1, 2, . . . ,D} is a random parameter
index.

Selection–A greedy selection mechanism is used as fol-
lows:

Xi,G =
{

Ui,G, if f(Ui,G) ≤ f(Xi,G)
Xi,G, otherwise

. (4)

Without loss of generality, this paper only considers min-
imization problem. If, and only if, the trial vector Ui,G is
better than Xi,G, then Xi,G is set to Ui,G; otherwise, the
Xi,G is unchanged.

III. DE ENHANCED BY NEIGHBORHOOD SEARCH

A. Literature Review

Like other stochastic algorithms, DE also suffers from the
problem of premature convergence when solving complex
multimodal problems. Sometimes, the suboptimum is near
to the global optimum and the neighborhoods of trapped
individuals may cover the global optimum. At such situation,
searching the neighborhood of an individual is helpful to
find better solutions. In this paper, we propose a hybrid
DE algorithm, called DENS, to search the neighborhoods
of individuals. The proposed approach differs from previous
neighborhood search strategies in DE. Before introducing the
DENS, we need to give a brief review of other DE variants
equipped by neighborhood search.

Yang et al. [7] introduced a neighborhood search strategy
for DE (NSDE), which generates F using Gaussian and
Cauchy distributed random numbers instead of predefining
a constant F . In NSDE, different values of F indicate

the different mutant vectors in the neighborhood of current
vector. Based on SaDE [5] and NSDE, Yang et al. [8]
proposed another version of DE, called self-adaptive DE with
neighborhood search (SaNSDE), which inherits from NSDE
to generate self-adaptive F , and uses a weighted adaptation
scheme for CR. The presented experimental results show
that SaNSDE outperforms SaDE and NSDE. As seen, the
above two DE variants with neighborhood search focus on
the adaption of the control parameters.

Vi,G =Xi,G + F · (Xbest,G − Xi,G)
+ F · (Xr1,G − Xr2,G), (5)

where Xbest,G indicates the best vector in the population at
generation G, r1, r2 ∈ {1, 2, · · · , Np}, and i �= r1 �= r2.

There is a tradeoff between exploration and exploitation in
most of evolutionary algorithms (EAs). The former indicates
the local search ability and makes the algorithm explore
every region of the feasible search space, while the latter
means the global search ability and accelerates the algorithm
converging to the near-optimal solutions. Most improvements
on EAs try to seek a balance these two factors that suits the
different kinds of problems. The DE/target − to − best/1
strategy described in Eq.5 promotes exploitation sine all the
vectors move to the same best position by the attraction of
Xbest, thereby converging faster to that point [10]. But in
many cases, the population may lose its global exploration
abilities within a relatively small number of generations,
thereafter getting trapped to some locally optimal point in the
search space. To tackle this problem, Das et al. [10] proposed
an enhanced DE algorithm (DEGL) by using an improved
DE/target−to−best/1 strategy which includes two muta-
tion strategies: local neighborhood and global neighborhood.

Local Neighborhood Mutation–In the local model, each
vector is mutated using the best position found so far in
a small neighborhood of it and not the whole population.
Thereby, the vectors are no longer attracted by the same
point. The modified model is defined by

Li,G =Xi,G + α · (Xn besti,G − Xi,G)
+ β · (Xp,G − Xq,G), (6)

where the subscript n besti indicates the best vector in the
neighborhood of Xi,G, p, q ∈ [i − k, i + k] with p �= q �= i,
and k is the neighborhood size. The vectors Xn besti,G, Xp,G

and Xq,G are defined on a small neighborhood of Xi,G, and
the search behavior of each vector is almost independent.
The information of vectors spread through the population
regarding the best position of each neighborhood. Therefore,
the attraction to specific points is weaker, which prevents the
population from getting trapped into local minima [10].

Global Neighborhood Mutation–Besides the local neigh-
borhood mutation, the DEGL also employs a global neigh-
borhood model by adding two scaling factors α and β in the



original DE/target − to − best/1 strategy as follows.

Gi,G =Xi,G + α · (Xbest,G − Xi,G)
+ β · (Xr1,G − Xr2,G), (7)

where the subscript Xbest indicates the best vector in the
entire population at generation G, r1, r2 ∈ {1, 2, · · · , Np}
with r1 �= r2 �= i, and Np is the population size. The
parameters α and β are the scaling factors.

Based on the two neighborhood mutations, DEGL com-
bines them using a scalar weight w ∈ (0, 1) to form a new
mutation strategy instead of the original DE/rand/1/bin or
DE/target − to − best/1 strategy.

Vi,G = w · Gi,G + (1 − w) · Li,G. (8)

Fig. 1. The k-neighborhood in a ring topology, where k = 2.

B. The Proposed Approach

In the DEGL, a static ring topology of neighborhood is
defined on the set of indices of the vectors. The vector
Xi,G is connected by Xi+1,G and Xi−1,G. For instance,
X2,G and XNp,G are two immediate neighbors of X1,G.
On the basis of the ring topology, DEGL defines a k-
neighborhood radius in the ring topology, consisting of
vectors Xi−k,G, . . . , Xi,G, . . . , Xi+k,G, for each Xi, where
k is an integer within {0, 1, · · · ,

Np−1
2 }, as the neighborhood

size must be smaller than the population size 2k + 1 ≤ Np.
Fig. 1 presents the k-neighborhood radius, where k = 2.
In the local neighborhood mutation, DEGL selects the best
vectors and two random vectors in the k-neighborhood radius
of Xi,G.

However, the above selection range is not the real neigh-
borhood of the current vector Xi,G, but the entire population.
Because the ring topology is defined on the indices of the
vectors, but not the Euclidean distances among the vectors.
The immediate neighbors Xi+1,G and Xi−1,G of Xi,G may
not the nearest neighbor to Xi,G. In Eq.6, the Xn besti,G,
Xp,G and Xq,G are not the nearest neighbors to Xi,G in the
whole population.

Algorithm 1: DE Enhanced by Neighborhood Search
(DENS).

Randomly initialize each individual in the population P (G);1
Calculate the fitness value of each Xi,G;2
NE = Np;3
Initialize Xpbesti,G and Xbest,G;4
while NE ≤ MAXNE do5

/* Execute the classical DE */
for i = 1 to Np do6

Randomly select 3 vectors Xi1,G, Xi2,G and Xi3,G7
from P (G), where i �= i1 �= i2 �= i3 ;
Vi,G = Xi1,G + F (Xi2,G − Xi3,G);8
for j = 1 to D do9

if rand(0, 1) < CR then10
Ui,j,G = Vi,j,G;11

end12
else13

Ui,j,G = Xi,j,G;14
end15

end16
Calculate the fitness value of Ui,G;17
NE = NE + 1;18
if f(Ui,G) ≤ f(Xi,G) then19

Xi,G = Ui,G20
end21
Update Xpbesti,G and Xbest,G, if needed;22

end23
/* Conduct the neighborhood search */
for i = 1 to Np do24

if rand(0, 1) ≤ pns then25
Create two trial vectors Li,G and Gi,G according26
to Eq.11 and Eq.12, respectively;
Calculate the fitness values of Li,G and Gi,G;27
NE = NE + 2;28
Select the fittest vectors from {Xi,G, Li,G and29
Gi,G} as new Xi,G;

end30
Xi,G+1 = Xi,G;31

end32
G = G + 1;33

end34

In this paper, we propose another neighborhood search
scheme which is inspired from the basic idea of DEGL [10]
and also particle swarm optimization (PSO) [17]. In PSO,
particles are attracted by their previous best particles and
the global best particle. Whenever a particle flies towards
good points in the search space, it continuously modifies its
trajectory by learning its previous best particle and the global
best particle. Both DE/target − to − best/1 and DEGL
only inherit from the experiences of the global best vector.
In our approach, a vector not only learns the exemplar of
its previous best vector Xpbest i, but also learns from the
experience of the global best vector Xbest. As mentioned
before, the defined k-neighborhood radius does not really
indicate the nearest neighbors to the current vector. So we
select the Xp,g and Xq,g in the whole population to simplify
the operation. The modified local neighborhood strategy is



TABLE I

THE AVERAGE RESULTS ACHIEVED BY DENS WITH DIFFERENT VALUES OF pns ON BENCHMARK 1

Functions
pns = 0.0 (DE) pns = 0.05 pns = 0.15 pns = 0.35 pns = 0.55 pns = 1.0

Mean Mean Mean Mean Mean Mean
f1 5.88e–16 2.81e–62 4.71e–105 3.83e–150 9.82e–176 2.49e–212
f2 2.37e–08 2.92e–31 9.36e–53 2.65e–65 3.46e–88 4.91e–106
f3 0.56 1.35e–38 1.21e–77 1.45e–122 7.22e–149 1.92e–188
f4 1.95 1.39e–26 2.98e–47 2.04e–69 1.26e–83 5.39e–102
f5 18.6 17.1 19.6 21.8 23.9 26.1
f6 0 0 0 0 0 0
f7 6.08e–03 8.04e–04 2.89e–04 9.56e–05 4.08e–05 5.70e–05
f8 –6120.2 –6639.5 –6824.6 –6695.9 –6726.2 –6839.6
f9 173.4 0 0 0 0 0
f10 5.97e–09 5.89e–16 5.89e–16 5.89e–16 5.89e–16 5.89e–16
f11 2.09e–15 0 0 0 0 0
f12 5.12e–17 3.07e–17 8.07e–17 3.89e–14 5.94e–12 2.28e–09
f13 3.27e–16 5.45e–17 2.19e–03 1.79e–12 2.20e–03 6.12e–02
f14 0.98804 0.98804 0.98804 0.98804 0.98804 0.98804
f15 3.07e–04 3.07e–04 3.07e–04 3.07e–04 3.07e–04 3.07e–04
f16 –1.03163 3.07e–04 3.07e–04 3.07e–04 3.07e–04 3.07e–04
f17 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979
f18 3 3 3 3 3 3
f19 –10.15 –10.15 –10.15 –10.15 –10.15 –10.15
f20 –10.40 –10.40 –10.40 –10.40 –10.40 –10.40
f21 –10.54 –10.54 –10.54 –10.54 –10.54 –10.54

defined by

Li,G =Xi,G + α · (Xpbesti,G − Xi,G)
+ β · (Xp,G − Xq,G), (9)

where Xpbesti,G is the previous best vector of Xi,G at
generation G, p and q are two random integers within
{1, 2, · · · , Np}.

The Eq.9 can be rewritten by

Li,G =(1 − α) · Xi,G + α · Xpbesti,G

+ β · (Xp,G − Xq,G). (10)

To simply the scaling factors (1 − α), α and β in Eq.10,
we use three random numbers a1, a2 and a3 instead of them,
where a1, a2, a3 ∈ [0, 1] and a1 +a2 +a3 = 1. Then, we get
a new local neighborhood model as follows.

Li,G =a1 · Xi,G + a2 · Xpbesti,G

+ a3 · (Xp,G − Xq,G). (11)

Similar to the local model, we define the global neighbor-
hood model as follows.

Gi,G =a1 · Xi,G + a2 · Xbest,G

+ a3 · (Xr1,G − Xr2,G), (12)

where Xbest,G indicates the global best vector in the entire
population at generation G, r1, r2 ∈ {1, 2, · · · , Np} with
r1 �= r2 �= i. The random numbers a1, a2 and a3 are the
same for each Xi,G, and they are generated anew in each
generation.

In the proposed approach, DENS, we use two modified
neighborhood search strategies (Eq.11 and Eq.12) to create
two trial vectors Li,G and Gi,G around the current vector
Xi,G. And then, the fittest one among Xi,G, Li,G and Gi,G

is selected as the new Xi,G. The main steps of the DENS
are described in Algorithm 1, where Xpbesti,G is the previous
best vector of Xi,G, Xbest,G is the global best vector found
so far in the population, G indicates the generation index,
pns is the probability of the neighborhood search, NE is
the number of function evaluations, and MAXNE is the
maximum number of function evaluations.

IV. EXPERIMENTAL VERIFICATIONS

A. Benchmark Functions

Experimental verifications for the proposed DENS are
conducted on two sets of benchmark functions. The first
benchmark (Benchmark 1) includes 21 well-known classical
functions, which were used in [3]. The second test suit
(Benchmark 2) includes 10 functions, which were provided
in CEC 2005 special session [18]. All the functions used in
this paper are minimization problems.

B. Results on Benchmark 1

The Benchmark 1 includes 21 functions, in which f1−f13

are with dimension of 30 and f14 − f21 are low-dimensional
functions. Functions f1-f5 are unimodal; function f6 is a
step function, which has one minimum and is discontinuous;
function f7 is a noisy function. Functions f8-f13 are multi-
modal functions where the number of local minima increases
exponentially with the problem dimension [19]. Functions
f14-f21 are low-dimensional problems which have only a



TABLE II

THE COMPARISON OF DENS WITH SADE, NSDE AND SANSDE ON BENCHMARK 1

Functions Dimension MAXNE
DE SaDE NSDE SaNSDE DENS

Mean Mean Mean Mean Mean
f1 30 150000 1.48e–25 7.49e–20 7.76e–20 3.02e–23 2.01e–95
f2 30 150000 1.63e–13 6.22e–11 4.51e–10 4.64e–11 9.18e–48
f3 30 150000 2.40e–03 1.12e–18 1.06e–14 6.62e–22 1.54e–61
f4 30 150000 1.68 2.96e–02 2.54e–02 1.59e–03 5.04e–40
f5 30 500000 1.09e–22 2.10e+01 1.24e+01 4.13e–30 8.89e–21
f6 30 150000 0 0 0 0 0
f7 30 150000 3.45e–03 7.58e–03 1.20e–02 7.21e–03 5.23e–04
f8 30 150000 –6603.5 –12569.5 –12569.5 –12569.5 –7519.8
f9 30 150000 142.86 4.00e–08 7.97e–02 1.84e–05 0
f10 30 150000 7.95e–14 9.06e–11 6.72e–09 2.36e–12 5.89e–16
f11 30 150000 0 8.88e–18 6.72e–09 0 0
f12 30 150000 3.02e–17 1.21e–19 5.63e–17 5.94e–23 3.02e–17
f13 30 150000 2.88e–17 1.75e–19 5.52e–16 3.12e–22 2.88e–17
f14 2 20000 0.998 0.998 0.998 0.998 0.998
f15 4 150000 3.07e–04 3.07e–04 3.07e–04 3.07e–04 3.07e–04
f16 2 20000 –1.03 –1.03 –1.03 –1.03 –1.03
f17 2 20000 0.398 0.398 0.398 0.398 0.398
f18 2 20000 3 3 3 3 3
f19 4 20000 –10.15 –10.15 –10.15 –10.15 –10.15
f20 4 20000 –10.40 –10.40 –10.40 –10.40 –10.40
f21 4 20000 –10.54 –10.54 –10.54 –10.54 –10.54

few local minima [19]. More details about the definitions of
the Benchmark 1 can be found in Table I in [3].

1) The Results of DENS with Different Values of pns:
In this subsection, we analyze the effects of pns on the

performance of DENS. To accomplish the task, different
values of pns are tested. The pns is set to 0.0, 0.05, 0.15,
0.35, 0.55 and 1.0 in the experiments, respectively. That will
help to select a better value for pns.

The parameter settings in this experiment are described
as follows. The population size, Np, is set to 100 [3],
[13]. The control parameters F and CR are set to 0.5 and
0.9 [13], respectively. The mutation strategy used in DENS
is DE/rand/1/bin. The maximum number of functions
evaluations MAXNE is set to 100,000 for all functions.

The results for DENS with different values of pns are
presented in Table I, where “Mean” indicates the mean best
function values found in the last generation.

From the results of Table I, it can be seen that a larger
pns shows better performance on unimodal functions except
for f5 and f6, while a smaller pns (pns > 0) achieves
better results on multimodal functions f12 and f13. For
the rest multimodal functions, DENS with different pns

almost obtains the same results. When pns = 0.0, in fact,
DENS is equal to the classical DE, and the neighborhood
search does not occur at all. Under this case, the algorithm
performs very poor and fails into local minima on many test
functions, while the algorithm just with few neighborhood
searches (pns = 0.05) works much better. It shows that
the neighborhood search is very helpful to improve the
performance of DE. However, it is not possible to select
the best pns in DENS, because that is problem oriented so
that the probability of the neighborhood search should be

empirically adjusted for different functions. In the DENS,
pns with value 0.05 is regarded as the relatively suitable one
for all test functions.

2) The Comparison of DENS with DE, SaDE, NSDE and
SaNSDE:

In this subsection, we present a comparative study of DE,
SaDE, NSDE, SaNSDE and DENS on Benchmark 1. For
the sake of a fair comparison, we use the same maximum
number of function evaluations MAXNE described in [8].
For the DENS, the parameters Np, pns, F and CR are set
to 100, 0.05, 0.5 and 0.9, respectively. The mutation strategy
is DE/rand/1/bin. The algorithm is terminated when the
number of function evaluations NE reaches to MAXNE,
which is listed in Table II.

The results of DENS and other four algorithms over 30
runs are given in Table II, where “Mean” indicates the mean
function value. The results of SaDE, NSDE and SaNSDE are
taken from Table II, III and IV in [8].

From the results in Table II, it can be seen that DENS out-
performs the other four algorithms on all unimodal functions
except for f6; on this function, all algorithms obtain the same
result. For the multimodal functions with high-dimension
(f8 − f13), DENS outperforms the other four algorithms on
f9 and f10, while SaNSDE surpasses other algorithms on f12

and f13. For function f11, DE, SaNSDE and DENS obtain
the same performance, while SaDE and NSDE fail to solve
it. SaDE, NSDE and SaNSDE successfully solve f8, while
DE and DENS fail. However, DENS outperforms DE on this
function. For the multimodal functions with low-dimension
(f14 − f21), all the four algorithms almost obtain the same
performance. Fig. 2 presents the convergence characteristics
in terms of the mean best fitness value of DE and DENS
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on four functions. It can be seen that DENS converges
faster than DE in the whole evolution except for f8; on this
function, DENS performs better than DE at the middle and
last stages of the evolution.

C. Results on Benchmark 2

Besides the Benchmark 1, a new set of benchmark func-
tions provided by CEC 2005 special session was used [18].
It includes 25 functions, where functions fcec1 − fcec5 are
unimodal, and the rest 20 functions fcec6 − fcec25 are
multimodal. In this paper, we only use the first 10 functions
fcec1 − fcec10 for the Benchmark 2. The dimension of the
problems is set to 10 and 30 in the experiments. Detailed
descriptions of these functions can be found in [18].

1) Results for D = 10:
In this subsection, we present a comparative study of

DMS-PSO [21], CMA-ES [22], [23], SaDE [5] and DENS
on Benchmark 2 with D = 10. To have a fair competition,
we use the same evaluation criterion described in [18] for
all algorithms. For the DENS, the parameters are same as
before, Np, pns, F and CR are set to 100, 0.05, 0.5 and 0.9,
respectively. The mutation strategy is DE/rand/1/bin. All
the algorithms are terminated when the number of function
evaluations NE reaches to 100,000 (MAXNE = 10, 000∗D)
or the function error value is less than 1e − 08.

The average function error values of DENS and other
three algorithms over 25 runs are given in Table III,
where “Mean” indicates the mean function error value. The
results of DMS-PSO, CMA-ES and SaDE are taken from
Table XIII in [20].

From the results in Table III, it can be seen that both DENS
and CMA-ES achieve the results less than the predefined
error vale 1e−08 for unimodal functions fcec1−fcec5, while
DMS-PSO and SaDE fail on 2 and 3 functions, respectivley.
For the rest five multimodal functions fcec6 − fcec10, CMA-
ES and DENS successfully solve two functions, while DMS-
PSO and SaDE fail to solve all.

TABLE III

THE COMPARISON OF DENS WITH DMS-PSO, CMA-ES AND SADE ON

BENCHMARK 1

Functions DMS-PSO CMA-ES SaDE DENS
D = 10 Mean Mean Mean Mean
fcec1 1e–09 1e–09 1e–09 1e–09
fcec2 1e–09 1e–09 1e–09 1e–09
fcec3 1e–09 1e–09 1.67e–02 1e–09
fcec4 1.89e–03 1e–09 1.42e–05 1e–09
fcec5 1.14e–06 1e–09 1.2e–02 1e–09
fcec6 6.89e–08 1e–09 1.20e–08 1e–09
fcec7 4.59e–02 1e–09 2.00e–02 0.2649
fcec8 2.00e+01 2.00e+01 2.00e+01 2.03e+01
fcec9 3.62 7.96e–02 4.97 6.92
fcec10 4.62 9.34e–01 4.89 1e–09

2) Results for D = 30:
In this subsection, we present a comparative study of

SaDE, NSDE, SaNSDE and DENS on Benchmark 2 with
D = 30. To have a fair competition, we use the same

TABLE IV

THE COMPARISON OF DENS WITH SADE, NSDE AND SANSDE ON

BENCHMARK 2

Functions SaDE NSDE SaNSDE DENS
D = 30 Mean Mean Mean Mean
fcec1 0 0 0 0
fcec2 1.25e–13 4.11 5.78e–14 5.76e–07
fcec3 1.77e+05 1.67e+06 5.43e+04 3.88e+05
fcec4 1.89e+02 8.27e+01 1.22e–04 1.01e–05
fcec5 1.00e+03 1.15e+03 2.45e–01 5.58
fcec6 2.99e+01 2.89e+01 1.59e–01 3.15e–02
fcec7 1.65e–02 1.12e–02 8.57e–03 9.04e–03
fcec8 2.09e+01 2.09e+01 2.09e+01 2.09e+01
fcec9 2.27e–15 1.99e–01 0 4.20e+01
fcec10 5.15e+01 4.24e+01 4.21e+01 0

maximum number of function evaluations (MAXNE =
10, 000 ∗ D) described in [8] for all algorithms. For the
DENS, the parameters Np, pns, F and CR are same as
previous experiment.

The average function error values of DENS and other
three algorithms over 25 runs are given in Table IV,
where “Mean” indicates the mean function error value. The
results of SaDE, NSDE and SaNSDE are taken from Table V
and VI in [8].

From the results in Table IV, it can be seen that DENS
and SaNSDE outperform SaDE and NSDE on majority of
test functions. Both SaNSDE and DENS almost achieve the
same performance on functions fcec1, fcec7 and fcec8. DENS
outperforms SaNSDE on functions fcec4,fcec6 and fcec10,
while SaNSDE achieves better results than DENS on fcec2,
fcec3, fcec5 and fcec9.

From the results of D = 10 and D = 30, the dimension
greatly affects the performance of the algorithms. With the
increasing of D, the problems become difficult to solve
because of the increasing complexity, such as fcec3 and fcec5.
From the comparison of DENS with other algorithms on
D = 10 and D = 30, DENS obtains similar performance
with CMA-ES and SaNSDE on the majority of test functions.
The results show that our approach is not a robust algorithm
for all kinds of problems. However, the major advantage of
the proposed algorithm is that the DENS is very simple, easy
to implement, and obtaining promising performance on the
majority of test functions.

V. CONCLUSIONS

In this paper, we propose a new DE variants enhanced
by neighborhood search, namely DENS, which differs from
other previous works on neighborhood search based DEs,
such as NSDE, SaNSDE and DEGL. The proposed approach
modifies the basic neighborhood mutation schemes used in
DEGL inspired by the mechanism of PSO. The DENS fo-
cuses on searching the neighbors by creating two trial vectors
around the current vector. If one of the trial vectors is better
than the current one, then replace the current vector with the
better trial; otherwise keeps the current one unchangeable.
In order to verify the performance of DENS, we provided a
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Fig. 2. Performance comparison between DE and DENS on functions f1, f3, f4 and f8.

comparative study of DENS and other six similar algorithms
on two sets of benchmark functions. The results show that
the DENS obtains promising performance on the majority of
test functions.

Compared with other DE variants with neighborhood
search, the concept of DENS is very simple and easy to
implement, while SaNSDE is difficult to implement because
of its complex steps in calculating the self-adaptive control
parameters. Moreover, the modified neighborhood search
strategies in DENS can be easily applied to other population-
based algorithms.

We may combine the simple parameter strategy used
in NSDE with DENS to obtain better performance. More
experiments will be conducted in our future work, such as
hybridization of DENS and other self-adaptive parameter
mechanisms, and applying the proposed strategies to other
evolutionary algorithms.
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