
8

Differential Evolution Via Exploiting Opposite
Populations

Shahryar Rahnamayan1 and H.R. Tizhoosh2

1 Faculty of Engineering and Applied Science, University of Ontario Institute of Technology
(UOIT), Canada
Shahryar.Rahnamayan@uoit.ca

2 Department of Systems Design Engineering, University of Waterloo, Canada
tizhoosh@uwaterloo.ca

Summary. The concept of opposition can contribute to improve the performance of population-
based algorithms. This chapter presents an overview of a novel opposition-based scheme to ac-
celerate an evolutionary algorithm, differential evolution (DE). The proposed opposition-based
DE (ODE) employs opposition-based computation (OBC) for population initialization and also
for generation jumping. Opposite numbers, representing anti-chromosomes, have been utilized
to improve the convergence rate of the classical DE. A test suite with 15 well-known benchmark
functions is employed for experimental verification. Descriptions for the DE and ODE algo-
rithms, and a comparison strategy are provided. Results are promising and confirm that the ODE
outperforms its parent algorithm DE. This work can be regarded as an initial study to exploit
oppositional concepts to expedite the optimization process for any population-based approach.

8.1 Introduction

Evolutionary algorithms (EAs) are well-established techniques to approach problems
with mixed-type variables, many local optima, and with undifferentiable or non-
analytical functions [1]. Among various kinds of evolutionary algorithms, differential
evolution (DE) is well known for its effectiveness and robustness. Many comparative
studies confirm that the DE outperforms many other optimizers [5]. Finding more ac-
curate solution(s) in a shorter period of time for complex black-box problems is still a
crucial target of research on evolutionary algorithms.

In this chapter, opposition-based schemes including opposition-based population ini-
tialization and generation jumping, will be described. The differential evolution (DE) is
selected as a parent algorithm to verify the acceleration effect of the proposed schemes.
A set of well-known complex benchmark functions is employed to experimentally com-
pare and analyze the algorithms. Results confirm that Opposition-Based Differential
Evolution (ODE) performs better than DE in terms of convergence speed and solution
accuracy.

The main purpose of this and previous works has been to introduce a new notion
into nonlinear continuous optimization via innovative metaheuristics, namely the notion
of opposition. Although, all conducted experiments utilize DE as a parent algorithm,
the proposed schemes are defined at the population level and, hence, have an inherent
potential to be utilized for acceleration of other population-based algorithms.

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 143–160, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

144 S. Rahnamayan and H.R. Tizhoosh

The organization of this chapter is as follows: A short review of differential evolu-
tion is given in section 8.2. The main reasons to select DE as a parent algorithm are
explained in section 8.3. Opposition-based differential evolution is described in sec-
tion 8.4. Experimental verifications are elaborated in section 8.5. Finally, the chapter is
concluded in section 8.6.

8.2 Differential Evolution (DE)

Differential evolution (DE) is a population-based optimization algorithm based on the
idea of genetic annealing which was used to solve the Chebyshev polynomial fitting
problem [1]. In order to solve the Chebyshev problem in continuous space, a modified
genetic annealing algorithm from bit-string to floating-point encoding and a consequent
switch from logical operators to arithmetic ones were proposed [2, 3, 4]. During these
experiments, the differential mutation operator to perturb the population of vectors was
discovered. Additionally, by using differential mutation, discrete recombination, and
pair-wise selection, it was recognized that an annealing mechanism is not needed; it
was removed completely and DE was born.

Let us assume that Xi,G(i = 1, 2, ..., Np) are candidate solution vectors in gener-
ation G (Np : population size). Like other evolutionary algorithms, DE starts with an
initial population, which is usually generated in a random manner. A typical vector of
the initial population can be generated as follows [5]:

Xi,j = lj + RANDj(0, 1) × (lj − uj) with j = 1, 2, ..., D, (8.1)

where D is the problem dimensionality; lj and uj are the lower and the upper bound-
aries of the jth variable, respectively, and RAND(0, 1) is a uniformly generated random
number in [0, 1].

Successive populations are generated by adding the weighted difference of two ran-
domly selected vectors to a third randomly selected vector. For classical DE (see Algo-
rithm 1), the mutation, crossover, and selection operators are straightforwardly defined.

8.2.1 Mutation

For each vector Xi,G in generation G a mutant vector Vi,G (see line 9 of Algorithm 1)
is defined by

Vi,G = Xa,G + F (Xc,G − Xb,G), (8.2)

where i = {1, 2, ..., Np}, and a, b, and c are mutually different random integer indices
selected from {1, 2, ..., Np}. Further, the variables i, a, b, and c are different so that
Np ≥ 4 is necessary. The factor F ∈ [0, 2] is a real constant which determines the
amplification of the added differential variation of (Xc,G −Xb,G) [5]. Larger values for
F result in higher diversity in the generated population and lower values cause faster
convergence.

8 Differential Evolution Via Exploiting Opposite Populations 145

8.2.2 Crossover

DE utilizes the crossover operation to generate new solutions by shuffling competing
vectors and also to increase the population diversity. For the classical DE (lines 10−16
of Algorithm 1), the binary crossover is utilized. It defines the following trial vector:

Ui,G = (U1i,G, U2i,G, ..., UDi,G), (8.3)

where

Uji,G =
{

Vji,G if RANDj(0, 1) ≤ Cr ∨ j = k,
Xji,G otherwise.

(8.4)

Cr ∈ (0, 1) is the predefined crossover rate, and RANDj(0, 1) is the jth evaluation of a
uniform random number generator. The parameter k ∈ {1, 2, ..., D} is a random index
chosen once for each i to make sure that at least one parameter is always selected from
the mutated vector Vji,G. The most common values for Cr are in the range of (0.4, 1)
[17]. Figure 8.1 illustrates a pictorial example for the binary crossover.

Fig. 8.1. A pictorial example for the binary crossover in DE (k = 7) [5]. When RANDj(0, 1) ≤
Cr ∨ j = k, then the variable is copied from Vji,G, otherwise copied from Xji,G to Uji,G.

8.2.3 Selection

Selection is a mechanism to decide which vector (Ui,G or Xi,G) should be a member
of next (new) generation G + 1. For a minimization problem, the vector with the lower
objective function value is chosen (greedy selection). If f(Ui) ≤ f(Xi), then Ui is
selected; otherwise Xi will be chosen (lines 17 − 23 of Algorithm 1).

146 S. Rahnamayan and H.R. Tizhoosh

(a) Population initialization for DE
(Np = 9). Contour lines for f(x1, x2)
are shown by ellipses.

(b) Generating difference vector Xc −
Xb. b and c are the randomly selected
indices.

(c) Generating Xa,G + F (Xc,G −
Xb,G). a is the third randomly selected
index.

(d) After the crossover if the generated
vector has lower objective value, then it
will be replaced with the vector 0.

Fig. 8.2. Illustration of one generate-and-test cycle for DE (starting from vector 0) [5]

This evolutionary cycle (i.e., mutation, crossover, and selection) is repeated Np times
to generate new populations. These successive generations are produced until the ter-
mination conditions are satisfied. One generate-and-test cycle for DE is presented in
Figure 8.2.

The starting point for the mutation, crossover and selection is indicated by the com-
ments in the algorithm. The algorithm terminates (line 5) when the best achieved fitness
value (BFV) is smaller than the value-to-reach (VTR), or the number of function calls
(NFC) exceeds the predefined maximum number of function calls (MAXNFC). The ter-
mination strategy can be defined differently based on the application or the purpose
of the experiment. The number of generations, the execution time, or some population

8 Differential Evolution Via Exploiting Opposite Populations 147

Algorithm 1. Differential Evolution (DE). P0: Initial population, Np: Population size,
V : Noise vector, U : Trial vector, D: Problem dimension, BFV: Best achieved fitness
value, VTR: Value-to-reach, NFC: Number of function calls, MAXNFC: Maximum num-
ber of function calls, F: Mutation constant, RAND(0, 1): Uniformly generated random
number, Cr: Crossover, f(·): Objective function, P ′: Population of the next generation.
1: Generate uniformly distributed random population P0

2: NFC ← 0
3: Evaluate individuals of P0

4: NFC ← NFC + Np

5: while (BFV > VTR and NFC < MAXNFC) do
6: {Generate-and-Test-Loop}
7: for i = 0 to Np do
8: Select three parents Xa, Xb, and Xc randomly from current population where i �= a �=

b �= c
{Mutation}

9: Vi ← Xa + F × (Xc − Xb)
{Crossover}

10: for j = 0 to D do
11: if RAND(0, 1) < Cr then
12: Ui,j ← Vi,j

13: else
14: Ui,j ← Xi,j

15: end if
16: end for

{Selection}
17: Evaluate Ui

18: NFC ← NFC + 1
19: if (f(Ui) ≤ f(Xi)) then
20: X ′

i ← Ui

21: else
22: X ′

i ← Xi

23: end if
24: end for
25: X ← X ′

26: end while

statistics (e.g., diversity or the improvement rate) are some commonly used termination
criteria.

8.2.4 DE in Optimization Field

A summary classification of optimization methods can be seen in Figure 8.3. According
to the proposed classification scheme for optimization methods, DE is a population-
based, nonlinear, continuous and global optimization algorithm [1].

Studies have been conducted to enhance the performance of the classical DE al-
gorithm by adaptive determination of DE control parameters. For instance, the fuzzy
adaptive differential evolution algorithm (FADE) was introduced by Liu and Lampinen

148 S. Rahnamayan and H.R. Tizhoosh

Fig. 8.3. A simple classification scheme of optimization methods [1]

[24]. They employed a fuzzy logic controller to set the mutation and crossover rates.
In the same direction, Brest et al. [20] proposed self-adaptive DE. Teo [30] proposed
a dynamic population sizing strategy based on self-adaptation, and Ali and Törn [25]
introduced auxiliary population and automatic calculating of the amplification factor F
for the difference vector.

Other researchers have experimented with multi-population ideas. Tasoulis et al. [31]
proposed parallel DE where they assign each subpopulation to a different processor
node. Shi et al. [32] partitioned high-dimensional search spaces into smaller spaces and
used multiple cooperating subpopulations to find the solution. They called this method
cooperative co-evolutionary differential evolution.

Hybridization with different algorithms is another direction for improvement of DE.
Sun et al. [26] proposed a new hybrid algorithm based on a combination of DE and esti-
mation of distribution algorithm. This technique uses a probability model to determine
promising regions in order to focus the search process on those areas. Noman and Iba
[35] incorporated local search into the classical DE. They employed fittest-individual
refinement which is a crossover-based local search. Fan and Lampinen [33] introduced a
new local search operation, trigonometric mutation, in order to obtain a better trade-off
between convergence speed and robustness. Kaelo and Ali [34] employed reinforce-
ment learning and some other schemes for generating fitter trial points.

8 Differential Evolution Via Exploiting Opposite Populations 149

All mentioned approaches are proposed to increase the convergence rate and/or the
accuracy of DE. For more details about DE extensions, the reader is referred to literature
[1, 5, 27].

8.3 Why Differential Evolution?

Differential evolution is a simple and compact metaheuristic which directly operates on
continuous variables (arithmetic operators instead of logical operators). Unlike many
binary versions of the genetic algorithms, DE works with the floating-point numbers.
This removes encoding and decoding of the variables which is a source of inaccuracy.
Consequently, this feature makes DE scalable for high-dimensional problems and also
time and memory efficient.

Another reason for choosing DE is that it does not need a probability density func-
tion to adapt the control parameters (unlike most evolutionary strategies) or any prob-
ability distribution pattern for the mutation (unlike genetic algorithms or evolutionary
programming). DE’s different mutation and crossover schemes distinguish it from other
evolutionary algorithms [5].

Additionally, handling mixed integers, discrete and continuous variables makes DE
more applicable for a wider range of real-world applications. The main advantage of DE
while working with integer variables is that it internally works on a continuous space
and only switches to the integer space during the evaluation of the objective function.
This characteristic supports higher accuracy compared to some other well-known al-
gorithms (e.g., GAs) which perform in the reverse manner [27]. Extensions of classical
DE are capable of handling boundary constraints and also nonlinear function constraints
which both are commonly required in the real-world problems [5].

Many comparative studies report higher robustness, convergence speed, and solution
quality of the DE when compared to other evolutionary algorithms for both benchmark
functions and real-world applications. A comprehensive performance study is provided
in [5]. The authors first compare DE to 16 other optimizers against five well-known
thirty-dimensional test functions (namely, Rosenbrock, Ackley, Griewangk, Rastrigin,
and Schwefel). Consequently, they explored eight function-based comparative studies
(e.g., unconstrained optimization, multi-constraints nonlinear optimization, and multi-
objective optimization) and also eleven application-oriented performance comparison
studies (e.g., multi-sensor fusion, earthquake relocation, image registration, and opti-
mization of neural networks). Finally, they conclude [5] “[...] DE may not always be the
fastest method, it is usually the one that produces the best results, although the number
of cases in which it is also the faster is significant. DE also proves itself to be robust,
both in how control parameters are chosen and in the regularity with which it finds the
true optimum. [...] As these researchers have found, DE is a good first choice when ap-
proaching a new and difficult global optimization problem is defined with continuous
and/or discrete parameters.”

8.4 Opposition-Based Differential Evolution

In his primary paper on opposition-based learning (OBL), Tizhoosh proposed to use
anti-chromosmes for GAs [12]. For every selected chromosome a corresponding

150 S. Rahnamayan and H.R. Tizhoosh

Fig. 8.4. Generation of anti-chromosomes [12]

anti-chromosome can be generated. The initial chromosomes are generally generated
randomly meaning that they can possess high or low fitness. However, in a complex
problem it is usually very likely that the initial populations do not contain optimal
solutions. Hence, in lack of any a-priori knowledge, it is reasonable to look at anti-
chromosomes simultaneously. Considering the search direction and its opposite at the
same time will bear more likelihood to reach the best population in a shorter time (for
more motivation on OBL see also Chapters 1-2). Tizhoosh also suggested to use total
or sub-total-mutation to generate opposite candidate solutions (Figure 8.4).

Similar to all population-based optimization algorithms, two main steps are dis-
tinguishable for DE, namely population initialization and producing new generations
by evolutionary operations such as mutation, crossover, and selection. The opposition-
based differential evolution (ODE) [6, 9, 13] will enhance these two steps by consid-
ering opposite solutions. For black-box optimization – which is a general assumption
for optimization methods – there is no information about the shape of the problem
landscape such that type II opposition can only be approximated via type I opposi-
tion (see Definitions 2 and 6 in Chapter 2). The pseudo-code of ODE is presented in
Algorithm 2 [13].

8.4.1 Opposition-Based Population Initialization

In absence of domain knowledge, uniform random number generation is generally the
only choice to create an initial population. But as mentioned before, by utilizing type-I
opposition it is possible to obtain fitter starting candidates. Block (1) from Figure 8.5
shows the implementation of opposition-based population initialization (lines 5− 12 of
Algorithm 2). The following steps explain that procedure [6]:

Step 1. Initialize the population P(Np) randomly,
Step 2. Create the opposite population OP by

OPi,j = aj + bj − Pi,j , with i = 1, 2, ..., Np; j = 1, 2, ..., D, (8.5)

8 Differential Evolution Via Exploiting Opposite Populations 151

Algorithm 2. Pseudo-code of Opposition-Based Differential Evolution (ODE) in or-
der to solve a minimization problem [Adopted from [13]]. P0: Initial population, OP0:
Opposite of initial population, P : Current population, OP : Opposite of current popu-
lation, D: Problem dimension, [lj , uj]: Range of the j-th variable, Jr: Jumping rate,
Cr: Crossover rate, minp

j /maxp
j : Minimum/maximum value of the j-th variable in the

current population. Lines 1-12 and 33-42 are implementations of opposition-based pop-
ulation initialization and opposition-based generation jumping, respectively.

1: Generate uniformly distributed random population P0

2: NFC ← 0
3: Evaluate individuals of P0

4: NFC ← NFC + Np

{**Begin of Opposition-Based Population Initialization**}
5: for i = 0 to Np do
6: for j = 0 to D do
7: OP0i,j ← lj + uj − P0i,j

8: end for
9: end for

10: Evaluate individuals of OP0

11: NFC ← NFC + Np

12: Select Np fittest (best) individuals from P0 and OP0 as initial population P0

{Begin of DE’s Evolution Steps}
13: while (BFV > VTR and NFC < MAXNFC) do
14: for i = 0 to Np do
15: Select three parents Pi1 , Pi2 , and Pi3 randomly from current population where

i �= i1 �= i2 �= i3
16: Vi ← Pi1 + F × (Pi2 − Pi3)
17: for j = 0 to D do
18: if RAND(0, 1) < Cr then
19: Ui,j ← Vi,j

20: else
21: Ui,j ← Pi,j

22: end if
23: end for
24: Evaluate Ui

25: NFC ← NFC + 1
26: if (f(Ui) ≤ f(Pi)) then
27: P ′

i ← Ui

28: else
29: P ′

i ← Pi

30: end if
31: end for
32: P ← P ′

{**Begin of Opposition-Based Generation Jumping**}
33: if RAND(0, 1) < Jr then
34: for i = 0 to Np do
35: for j = 0 to D do
36: OPi,j ← MINp

j + MAXp
j − Pi,j

37: end for
38: end for
39: Evaluate individuals of OP0

40: NFC ← NFC + Np

41: Select Np fittest (best) individuals from P and OP as current population P
42: end if
43: end while

152 S. Rahnamayan and H.R. Tizhoosh

Fig. 8.5. Gray boxes extend DE to ODE. Block (1): Opposition-based initialization, Block (2):
Opposition-based generation jumping (Jr: jumping rate, RAND(0, 1): uniformly generated ran-
dom number, Np: population size).

where Pi and OPi denote the ith individual of the current population and its corre-
sponding opposite, respectively, and [lj, uj] is the range of the jth variable.

Step 3. Select the Np fittest (best) individuals from P ∪ OP as the initial population.

According to the above procedure, 2Np function evaluations are required instead
of Np for the regular random population initialization. But, by the opposition-based
initialization, the parent algorithm can start with the fitter initial individuals instead.

8.4.2 Opposition-Based Generation Jumping

By applying a similar approach mentioned in Sec. 8.4.1 to the current population, which
means selecting Np best individuals from the current and corresponding opposite popu-
lations, the evolutionary process can be forced to jump to a fitter generation (the gener-
ation with fitter individuals). After generating new populations, the opposite population
is calculated and the Np fittest (best) individuals are selected from the union of the cur-
rent and opposite population based on a jumping rate Jr ∈ (0, 0.4) [13, 15]. In order to
calculate the opposite population for generation jumping, the opposite of each variable
is calculated dynamically; that is, the maximum and minimum values of each variable

8 Differential Evolution Via Exploiting Opposite Populations 153

Fig. 8.6. Example to visualize the opposition-based generation jumping in 2D space (Np = 8)

in the current population ([MINp
j , MAXp

j]) are used to calculate opposite points instead
of using variables’ predefined interval boundaries ([lj, uj]):

OPi,j = MINp
j + MAXp

j − Pi,j , i = 1, 2, ..., Np; j = 1, 2, ..., D. (8.6)

If the opposites are calculated within variables’ static boundaries, it is possible to
jump outside of the already shrunken search space and lose the knowledge of the
already reduced space. Hence, we calculate opposite points by using variables’ current
interval in the population ([MINp

j , MAXp
j]) which is, as the search does progress, in-

creasingly smaller than the corresponding initial range [lj , uj]. Block (2) from
Figure 8.5 illustrates the implementation of opposition-based generation jumping (lines
33 − 42 of Algorithm 2).

A pictorial example for opposition-based generation jumping procedure in 2D space
is illustrated in Figure 8.6. The letter ‘S’ indicates the location of the optimal solution.
Dark and light circles represent the points and the opposite points, respectively.

In [14], we established mathematical proofs and experimental evidence to verify the
advantage of opposite points compared to additional random points when dealing with
high-dimensional problems (see also Chapter 2 for more discussions on the formalism
of opposition). Both experimental and mathematical results confirmed that opposite
points are more beneficial than additional independent random points. We can conclude
that the opposition-based learning can be utilized to accelerate optimization methods
since considering the pair x and its opposite x̆ has apparently a higher fitness probability
than pure randomness.

8.5 Experimental Verifications

In this section, the convergence metrics are defined and DE and ODE are com-
pared experimentally over well-known benchmark functions (section 8.5.1). Also, the

154 S. Rahnamayan and H.R. Tizhoosh

contribution of opposite points to the achieved acceleration rate is investigated by re-
placing them with random points (section 8.5.2).

8.5.1 Comparison of DE and ODE

A set of 15 well-known benchmark functions [6, 13, 15], which contains 7 unimodal
(f1,f2,f3,f6,f10,f11,f14) and 8 multimodal functions (f4,f5,f7,f8,f9,f12,f13,f15), has
been selected for performance verification of ODE. The definition of the benchmark
functions is given in Table 8.1.

Table 8.1. List of employed benchmark functions (unimodal and multimodal)

Function Search Space

f1(X) =
D∑

i=1
xi

2 [−5.12, 5.12]D

f2(X) =
D∑

i=1
ixi

2 [−5.12, 5.12]D

f3(X) =
D∑

i=1

(
i∑

j=1
xj

)2

[−65, 65]D

f4(X) = 10D +
D∑

i=1

(
x2

i − 10 cos(2πxi)
)

[−5.12, 5.12]D

f5(X) =
D∑

i=1

x2
i

4000 −
D∏

i=1
cos

(
xi√

i

)
+ 1 [−600, 600]D

f6(X) =
D∑

i=1
|xi|(i+1) [−1, 1]D

f7(X) = −20 exp

⎛
⎜⎜⎝−0.2

√
D∑

i=1
x2

i

D

⎞
⎟⎟⎠ − exp

⎛
⎜⎝

D∑
i=1

cos(2πxi)

D

⎞
⎟⎠ + 20 + e [−32, 32]D

f8(X) = sin2(3πx1) +
D−1∑
i=1

(xi − 1)2(1 + sin2(3πxi+1)) + (xD − 1)(1 + sin2(2πxD)) [−10, 10]D

f9(X) = −
D∑

i=1
sin(xi)(sin(ix2

i /π))2m, (m = 10) [0, π]D

f10(X) =
D∑

i=1
x2

i +
(

D∑
i=1

0.5ixi

)2

+
(

D∑
i=1

0.5ixi

)4

[−5, 10]D

f11(X) =
D∑

i=1
|xi| +

D∏
i=1

|xi| [−10, 10]D

f12(X) =
D∑

i=1
(�xi + 0.5�)2 [−100, 100]D

f13(X) =
D∑

i=1
|xi sin(xi) + 0.1xi| [−10, 10]D

f14(X) = exp
(
−0.5

D∑
i=1

x2
i

)
[−1, 1]D

f15(X) = 1 − cos(2π ‖ x ‖) + 0.1 ‖ x ‖, where ‖ x ‖=
√

D∑
i=1

x2
i [−100, 100]D

We compare the convergence speed of DE and ODE by measuring the number of
function calls (NFC) which is the most commonly used metric in literature [5, 7, 8, 9,
10, 11, 19]; a smaller NFC means higher convergence speed. The termination criterion
is to find a value smaller than the value-to-reach (VTR) before reaching the maximum
number of function calls MAXNFC. In order to minimize the effect of the stochastic
nature of the algorithms on the metric, the reported number of function calls (NFC) for

8 Differential Evolution Via Exploiting Opposite Populations 155

Table 8.2. Parameter settings for conducted experiments

Parameter name Setting Reference
population size (Np) 100 [20, 21, 22]
differential amplification factor (F) 0.5 [11, 20, 23, 24, 25]
crossover probability constant (Cr) 0.9 [11, 20, 23, 24, 25]
jumping rate constant (Jr) 0.3 [9, 13, 18]
maximum number of function calls (MAXNFC) 106 [9, 13, 18]
value to reach (VTR) 10−8 [10]
mutation strategy DE/rand/1/bin [5, 20, 23, 26, 27]

Table 8.3. Comparison of DE, ODE, and RDE. The best result for each case is highlighted in
boldface. Results for RDE have been discussed in section 8.5.2 (corresponding results for replac-
ing the opposite points with random points).

DE ODE RDE
F D NFC SR SP NFC SR SP NFC SR SP
f1 30 87748 1 87748 47716 1 47716 115096 1 115096
f2 30 96488 1 96488 53304 1 53304 126780 1 126780
f3 20 177880 1 177880 168680 1 168680 231152 1 231152
f4 10 328844 1 328844 70389 0.76 92617 501875 0.96 522786
f5 30 113428 1 113428 69342 0.96 72231 149744 1 149744
f6 30 25140 1 25140 8328 1 8328 29096 1 29096
f7 30 169152 1 169152 98296 1 98296 222784 1 222784
f8 30 101460 1 101460 70408 1 70408 138308 1 138308
f9 10 191340 0.76 251763 213330 0.56 380946 306900 0.60 511500
f10 30 385192 1 385192 369104 1 369104 498200 1 498200
f11 30 187300 1 187300 155636 1 155636 244396 1 244396
f12 30 41588 1 41588 23124 1 23124 54316 1 54316
f13 30 411164 1 411164 337532 1 337532 927230 0.24 3863458
f14 10 19528 1 19528 15704 1 15704 23156 1 23156
f15 10 37824 1 37824 24260 1 24260 46800 1 46800

SRave 0.98 0.95 0.92

each function is the average over 50 different trials. The number of times, for which
the algorithm successfully reaches the VTR for each test function is measured as the
success rate SR:

SR =
number of times reached VTR

total number of trials
. (8.7)

In order to combine these two measures (NFC and SR), a new measure, called suc-
cess performance has been introduced as follows [10]:

SP =
average of NFC over successful runs)

SR
. (8.8)

The parameter setting for all conducted experiments is summarized in Table 8.2.
In order to maintain a reliable and fair comparison, the parameter settings are kept

the same for all conducted experiments, unless we mention new settings. Besides, for
all experiments, the reported values are the average of the results for 50 indepen-
dent runs. In addition, and most importantly, extra fitness evaluations required for the

156 S. Rahnamayan and H.R. Tizhoosh

(a) f1, ODE is 1.83 times faster

(b) f2, ODE is 1.81 times faster

(c) f5, ODE is 1.63 times faster

(d) f7, ODE is 1.72 times faster

Fig. 8.7. Sample convergence graphs (best solution vs. number of function calls). As seen, ODE
(dotted curve) shows better convergence speed than DE (solid curve) because it needs small
amount of function calls to find the solution. is calculated by NFCDE

NFCODE
.

8 Differential Evolution Via Exploiting Opposite Populations 157

opposite points (both in population initialization and also generation jumping phases)
are counted as well to accurately measure the benefit in spite of the additional overhead
for computing the opposites.

The results for DE and ODE to solve the test problems are given in Table 8.3 (the
results in the last column will be discussed in section 8.5.2). ODE outperforms DE on
14 benchmark functions with respect to the success performance. Some sample perfor-
mance comparison graphs are presented in Figure 8.7. ODE (dotted curve) shows better
convergence speed than DE (solid curve) because it needs smaller number of function
calls to find the solution. With the same parameter settings for both algorithms and fix-
ing the jumping rate for the ODE (Jr = 0.3), their success rates are comparable while
ODE shows better convergence speed than DE. DE has a better success rate (SR) than
ODE on 3 functions (f4,f5, and f9). The jumping rate is an important control parameter
which, if optimally set, can achieve even better results. Detailed discussions about this
parameter can be found in [13].

On 7 multimodal functions (out of 8), ODE performs better than DE. This means that
the opposition-based extension performs well even when the function contains many
optima.

8.5.2 Contribution of Opposite Points

In this section, we verify whether the achieved acceleration rate for DE is really due to
utilizing opposite points. For this purpose, all parts of the proposed algorithm remain
unchanged and instead of using opposite points for the population initialization and the
generation jumping, uniformly generated random points will be employed. In order to
have a fair competition for this case, exactly like what we did for opposite points, the
current interval (dynamic interval, [MINp

j , MAXp
j]) of the variables are used to generate

new random points in the generation jumping phase. So, line 4 in Algorithm 2 should
be changed to:

RP0i,j ←− lj + (uj − lj) × RAND(0, 1),

where RAND(0, 1) generates a uniformly distributed random number on the interval
(0, 1). In fact, instead of generating Np, 2Np random individuals are generated. In the
same manner, line 30 in Algorithm 2 should be replaced with

RPi,j ←− MINp
j + (MAXp

j − MINp
j) × RAND(0, 1).

As mentioned before, the current boundaries of the variables ([MAXp
j , MINp

j]) are
used to generate random numbers for generation jumping. And finally, in order to have
the same selection method, lines 7 and 33 in Algorithm 2 are substituted with

Select Np fittest (best) individuals from P and RP as current populationP ;

After these modifications, the random version of ODE (called RDE) is established.
Results for the current algorithm are presented in Table 8.3. As apparent, RDE can

158 S. Rahnamayan and H.R. Tizhoosh

not outperform DE or ODE on any of benchmark function with respect to the success
performance. This clearly demonstrates that the achieved improvements are due to us-
age of opposite points, and that the same level of improvement cannot be achieved via
additional random sampling [14, 15].

8.6 Conclusions and Future Work

In this chapter, we briefly reviewed how opposition-based optimization can be em-
ployed to accelerate convergence speed of differential evolution by embedding
opposition-based population initialization and opposition-based generation jumping.
The experimental results confirmed that ODE provides a higher performance than the
classical DE. However, opposition-based optimization is still in its infancy and future
research is required to fully investigate its benefits and drawbacks.

By replacing opposite points with uniformly generated random points in the same
variables’ range, the resulted algorithm (RDE) performs slower than the parent algo-
rithm (DE). Therefore, the contribution of opposite points to the acceleration process
was confirmed and was not reproducible by additional random sampling.

The benefits of opposition-based optimization is most likely not the same for dif-
ferent problems. This is because of using fixed settings for the parameters and/or the
different characteristics of each problem (e.g., modality, dimension, surface features,
separability of the variables and so on). Similar to all optimization approaches, ODE
does not present a consistent behavior over different problems. However, over the em-
ployed benchmark test suite, ODE performed better than classical DE.

The proposed opposition-based schemes are general enough to be applied to other
population-based algorithms. The opposition-based schemes work at the population
level and leave the evolutionary part of the algorithms untouched. This generality
gives higher flexibility to these schemes to be embedded inside other population-based
algorithms.

Opposition-based optimization opens new perspectives to accelerate optimization
processes. For most practical applications, we are faced with constrained functions and
also with multi-objective problems. So far, there are many approaches for handling
constraints in DE and also for multi-objective optimization using DE. All of these pro-
posals can be borrowed and investigated to generalize ODE to solve multi-objective
constrained problems.

References

1. Feoktistov, V.: Differential Evolution. In: Search of Solutions. Springer, USA (2006)
2. Storn, R., Price, K.: Differential Evolution - a Simple and Efficient Adaptive Scheme for

Global Optimization over Continuous Spaces, Technical Report in ICSI, TR-95-012 (1995)
3. Price, K., Storn, R.: Differential Evolution: Numerical Optimization Made Easy. Dr. Dobb’s

Journal 220, 18–24 (1997)
4. Storn, R., Price, K.: Differential evolution: A simple and efficient heuristic for global opti-

mization over continuous spaces. Journal of Global Optimization 11(6), 341–359 (1997)
5. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to

Global Optimization (Natural Computing Series), 1st edn. Springer, Heidelberg (2005)

8 Differential Evolution Via Exploiting Opposite Populations 159

6. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: A Novel Population Initialization
Method for Accelerating Evolutionary Algorithms. Elsevier Journal on Computers and
Mathematics with Applications 53(10), 1605–1614 (2007)

7. Andre, J., Siarry, P., Dognon, T.: An Improvement of the Standard Genetic Algorithm Fight-
ing Premature Convergence in Continuous Optimization. Advance in Engineering Soft-
ware 32, 49–60 (2001)

8. Hrstka, O., Kučerová, A.: Improvement of Real Coded Genetic Algorithm Based on Differ-
ential Operators Preventing Premature Convergence. Advance in Engineering Software 35,
237–246 (2004)

9. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolu-
tion Algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2006), IEEE World
Congress on Computational Intelligence, Vancouver, Canada, pp. 7363–7370 (2006)

10. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem
Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Op-
timization, Technical Report, Nanyang Technological University, Singapore And KanGAL
Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur) (2005)

11. Vesterstroem, J., Thomsen, R.: A Comparative Study of Differential Evolution, Particle
Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. In:
Proceedings of the Congress on Evolutionary Computation (CEC 2004), vol. 2, pp. 1980–
1987. IEEE Publications, Los Alamitos (2004)

12. Tizhoosh, H.R.: Opposition-Based Learning: A New Scheme for Machine Intelligence. In:
Proceedings of International Conference on Computational Intelligence for Modelling Con-
trol and Automation - CIMCA 2005, Vienna - Austria, vol. I, pp. 695–701 (2005)

13. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution
(ODE). Journal of IEEE Transactions on Evolutionary Computation 12(1), 64–79 (2008)

14. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition versus Randomness in Soft
Computing Techniques. Elsevier Journal on Applied Soft Computing 8, 906–918 (2008)

15. Rahnamayan, S.: Opposition-Based Differential Evolution, PhD Thesis, Department of Sys-
tems Design Engineering, University of Waterloo, Waterloo, Canada (2007)

16. Eiben, A.E., Hinterding, R.: Paramater Control in Evolutionary Algorithms. IEEE Transac-
tions on Evolutionary Computation 3(2), 124–141 (1999)

17. Das, S., Konar, A., Chakraborty, U.K.: Two Improved Differential Evolution Schemes for
Faster Global Search. In: Proceedings of the 2005 conference on Genetic and evolutionary
computation, Washington, USA, pp. 991–998 (2005)

18. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolu-
tion (ODE) With Variable Jumping Rate. In: Proc. of IEEE Symposium on Foundations of
Computational Intelligence, Honolulu, Hawaii, USA, pp. 81–88 (2007)

19. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution
for Optimization of Noisy Problems. In: IEEE Congress on Evolutionary Computation (CEC
2006), IEEE World Congress on Computational Intelligence, Vancouver, Canada, pp. 6756–
6763 (2006)

20. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters
in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. Journal
of IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

21. Lee, C.Y., Yao, X.: Evolutionary programming using mutations based on the Lvy probability
distribution. IEEE Transactions on Evolutionary Computation 8(1), 1–13 (2004)

22. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transactions on
Evolutionary Computation 3(2), 82–102 (1999)

23. Storn, R., Price, K.: Differential Evolution- A Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)

160 S. Rahnamayan and H.R. Tizhoosh

24. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Computing-A
Fusion of Foundations, Methodologies and Applications 9(6), 448–462 (2005)

25. Ali, M.M., Trn, A.: Population set-based global optimization algorithms: Some modifications
and numerical studies. Comput. Oper. Res. 31(10), 1703–1725 (2004)

26. Sun, J., Zhang, Q., Tsang, E.P.K.: DE/EDA: A new evolutionary algorithm for global opti-
mization. Information Sciences 169, 249–262 (2005)

27. Onwubolu, G.C., Babu, B.V.: New Optimization Techniques in Engineering. Springer, Berlin
(2004)

28. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters
in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. Journal
of IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

29. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Quasi-Oppositional Differential Evolu-
tion. In: IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, pp. 2229–
2236 (September 2007)

30. Teo, J.: Exploring dynamic self-adaptive populations in differential evolution. Soft Comput-
ing - A Fusion of Foundations, Methodologies and Applications 10(8) (2006)

31. Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel Differential Evo-
lution. In: Proceedings of the Congress on Evolutionary Computation (CEC 2004), vol. 2,
pp. 2023–2029. IEEE Publications, Los Alamitos (2004)

32. Shi, Y.-J., Teng, H.-F., Li, Z.-Q.: Cooperative Co-evolutionary Differential Evolution for
Function Optimization. In: Proceedings of First International Conference in Advances in
Natural Computation (ICNC 2005), Changsha, China, pp. 1080–1088 (2005)

33. Fan, H.-Y., Lampinen, J.: A Trigonometric Mutation Operation to Differential Evolution.
Global Optimization 27(1), 105–129 (2003)

34. Kaelo, P., Ali, M.M.: Probabilistic adaptation of point generation schemes in some global
optimization algorithms. Optimization Methods and Software 27(3), 343–357 (2006)

35. Noman, N., Iba, H.: Enhancing differential evolution performance with local search for high
dimensional function optimization. In: Proceedings of the 2005 conference on Genetic and
evolutionary computation (GECCO 2005), Washington DC, USA, pp. 967–974 (2005)

36. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Longman Publishing Co., USA (2005)

37. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE Interna-
tional Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

	Differential Evolution Via Exploiting Opposite Populations
	Introduction
	Differential Evolution (DE)
	Mutation
	Crossover
	Selection
	DE in Optimization Field

	Why Differential Evolution?
	Opposition-Based Differential Evolution
	Opposition-Based Population Initialization
	Opposition-Based Generation Jumping

	Experimental Verifications
	Comparison of DE and ODE
	Contribution of Opposite Points

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

