
Information Sciences 223 (2013) 119–135
Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Diversity enhanced particle swarm optimization with neighborhood search

Hui Wang a,⇑, Hui Sun a, Changhe Li b, Shahryar Rahnamayan c, Jeng-shyang Pan a,d,e

a School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, PR China
b School of Computer, China University of Geosciences, Wuhan 430072, PR China
c Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 7K4
d Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, PR China
e Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 27 December 2011
Received in revised form 23 June 2012
Accepted 10 October 2012
Available online 25 October 2012

Keywords:
Particle Swarm Optimization (PSO)
Diversity
Neighborhood search
Global optimization
0020-0255/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.ins.2012.10.012

⇑ Corresponding author. Tel.: +86 0791 88126661
E-mail addresses: wanghui_cug@yahoo.com.cn (

.ca (S. Rahnamayan), jspan@cc.kuas.edu.tw (J.-s. Pan
Particle swarm optimization (PSO) has shown an effective performance for solving variant
benchmark and real-world optimization problems. However, it suffers from premature
convergence because of quick losing of diversity. In order to enhance its performance, this
paper proposes a hybrid PSO algorithm, called DNSPSO, which employs a diversity enhanc-
ing mechanism and neighborhood search strategies to achieve a trade-off between explo-
ration and exploitation abilities. A comprehensive experimental study is conducted on a set
of benchmark functions, including rotated multimodal and shifted high-dimensional prob-
lems. Comparison results show that DNSPSO obtains a promising performance on the
majority of the test problems.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In the past decades, several variant swarm intelligence-based algorithms have been proposed to solve complex bench-
mark and real-world optimization problems, e.g., Particle Swarm Optimization (PSO) [29], Ant Colony Optimization (ACO)
[14], Artificial Bee Colony (ABC) [27], Cat Swarm Optimization [7], etc. Due to PSO’s simple concept, easy implementation
yet effectiveness, it has become popular in evolutionary optimization community.

In PSO, each particle in the population (swarm) flies to its previous best position (pbest) and the global best position
(gbest). Although, the mechanism of this motion can result a fast convergence rate, it suffers from the premature conver-
gence problem, which means it can be easily trapped into local minima when solving multimodal problems. When particles
move toward the direction of pbest and gbest, the dissimilarities (diversity) among particles gradually decreases. When this
happens, the search is restricted to a small search space containing these similar particles. Consequently, finding new can-
didate solutions is very difficult. If reducing diversity takes place too early, a premature stagnation will be caused.

It is known that the performance of PSO is highly related to diversity of particles, specially when attempts are made to
avoid premature convergence and to escape from local optima. So, maintaining a higher diversity in PSO is a crucial task.
Diversity measures are traditionally used to analyze evolutionary algorithms (EAs) rather than guiding them. Recently,
Ursem [51] proposed a diversity-guided evolutionary algorithm, which uses a diversity measure to alternate between
exploring and exploiting behaviors. After that some similar diversity-guided strategies are utilized in PSO to enhance its per-
formance [24,40,42,47,54].
. All rights reserved.

; fax: +86 0791 88126660.
H. Wang), sunhui2006@yahoo.com.cn (H. Sun), cl160@mcs.le.ac.uk (C. Li), shahryar.rahnamayan@uoit
).

http://dx.doi.org/10.1016/j.ins.2012.10.012
mailto:wanghui_cug@yahoo.com.cn
mailto:sunhui2006@yahoo.com.cn
mailto:cl160@mcs.le.ac.uk
mailto:shahryar.rahnamayan@uoit.ca
mailto:shahryar.rahnamayan@uoit.ca
mailto:jspan@cc.kuas.edu.tw
http://dx.doi.org/10.1016/j.ins.2012.10.012
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

120 H. Wang et al. / Information Sciences 223 (2013) 119–135
Majority of the diversity guided PSO algorithms are usually based on monitoring the diversity of swarm. When the diver-
sity drops below a predefined constant value, a diversity enhancing operator (such as repulsion mechanism) is applied to
avoid premature convergence. When the diversity increases to another predefined constant value, a diversity decreasing
operator (such as greedy selection) is used to support a fast convergence rate. However, the calculation of diversity is a
time-consuming task. In order to maintain diversity and avoid calculating the diversity, this paper proposes a novel diversity
enhancing mechanism for PSO. Furthermore, a neighborhood search strategy is employed to improve the local and global
search abilities. Experimental studies on 45 well-known benchmark functions, including rotated multimodal and shifted
high-dimensional problems, shows that our approach obtains a promising performance.

The rest of the paper is organized as follows. Section 2 presents some PSO related works. Section 3 describes our proposed
approach. Section 4 presents experimental simulations, results, and discussions. Finally, the work is concluded in Section 5.
2. Related works

PSO is a population-based stochastic algorithm that starts with an initial population of randomly generated particles. For
a search problem in a D-dimensional space, a particle represents a potential solution presented by their velocity and position.
During a search process, each particle is attracted by its previous best particle (pbest) and the global best particle (gbest) as
follows [43].
v ijðt þ 1Þ ¼ w � v ijðtÞ þ c1 � rand1ij � ðpbestijðtÞ � xijðtÞÞ þ c2 � rand2ij � ðgbestjðtÞ � xijðtÞÞ; ð1Þ
xijðt þ 1Þ ¼ xijðtÞ þ v ijðt þ 1Þ; ð2Þ
where i = 1, 2, . . . , N is the particle’s index, N is the population size, Xi = (xi1,xi2, . . . ,xiD) is the position of the ith particle;
Vi = (vi1,vi2, . . . ,viD) represents the velocity of the ith particle; the pbesti = (pbesti1,pbesti2, . . . ,pbestiD) is the best previous posi-
tion yielding the best fitness value for the ith particle; and gbest = (gbest1,gbest2, . . . ,gbestD) is the global best particle found
by all particles so far. The parameter w, called inertia factor, which is used to balance the global and local search abilities of
particles [43], rand1ij and rand2ij are two uniform random numbers generated independently within the range of [0,1], c1 and
c2 are two learning factors which control the influence of the social and cognitive components, and t = 1, 2, . . . indicates the
iteration number.

Since PSO was introduced, it has become a popular optimizer and has widely been applied in practical problems. In the
past decades, many variants of PSO have been proposed. A brief overview of these variants is presented as follows.

Shi and Eberhart [43] introduced a parameter called inertia weight w for the classical PSO. The inertia weight is used to
balance the exploration and the exploitation abilities, a linearly decreasing w over the search process was a good choice [43].
Clerc and Kennedy [8] proposed a constriction factor, which can guarantee the convergence and improve the convergence
velocity. Bergh and Engelbrecht [2] presented a comprehensive study on the parameters of PSO, and provided a formal proof
that each particle converges to a stable point.

In order to improve the performance of PSO, different types of topologies have been proposed. Kennedy [28,30] analyzed
the effects of neighborhood topology on PSO, and proposed four different neighborhood topologies. The presented results
show that PSO with a small neighborhood may perform better on complex problems, while PSO with a large neighborhood
may perform better on simple problems. Suganthan [45] introduced a neighborhood operator which gradually increases the
neighborhood size of a particle until it covers all particles in a swarm. Hu and Eberhart [25] updated the neighborhood of
each particle by dynamically selecting m particles that are the nearest to the current particle. Mendes and Kennedy [37] pro-
posed a fully informed PSO algorithm (FIPS), in which the neighbors of each particle, instead of pbest and gbest, are used to
update the velocity. Based on the FIPS, Mohais et al. [38] presented random and dynamic neighborhoods by re-structuring
neighborhoods in terms of a diversity-preserving measure. Peram et al. [41] presented a modified PSO called fitness-dis-
tance-ration-based PSO (FDR-PSO), which employs a new velocity updating method. Yano et al. [58] proposed a hybrid
PSO algorithm with a neighborhood search. When the current position of a particle is better than its previous best position,
the algorithm will search 2D � 1 points in the neighborhood of the current point (D is the dimension size). Nevertheless, the
number of search points exponentially grow with the increase of D. To tackle this problem, they defined a maximum number
of search points for different kinds of problems. However, the algorithm converges very slowly because the neighborhood
search is time consuming.

Bergh and Engelbrecht [1] proposed a cooperative approach for PSO (CPSO-H) for solving multimodal problems. Liang
et al. [34] introduced a comprehensive learning PSO (CPSO) to learn other particles’ experiences in different dimensions.
Chen et al. [6] proposed a novel PSO algorithm by employ dynamic linkage discovery and recombination to improve the per-
formance of PSO. The former is a costless and effective linkage recognition technique, and the latter utilizes the discovered
linkage configuration to promote the cooperation of PSO. Ho et al. [22] introduced an orthogonal method for PSO to solve
task assignment problems. Li and Yang [31,32] presented an adaptive learning PSO for function optimization, in which
the learning mechanism of each particle is separated into three components: its own historical best position, the closest
neighbor and the global best one. By using this individual level adaptive technique, a particle can well control its well-bal-
anced behavior of exploration and exploitation. Hsieh et al. [23] presented an efficient population utilization strategy for PSO
(EPUS-PSO), which introduced a population manager and a solution sharing strategies. In EPUS-PSO, the population size is

H. Wang et al. / Information Sciences 223 (2013) 119–135 121
variable. The population manager can increase or decrease particle numbers according to the searching status. Cervantes
et al. [4] proposed an adaptive Michigan PSO (AMPSO) to reduce the dimension of the search space. The reported results con-
firm that AMPSO is able to improve the performance of the nearest neighbor classifiers. Zhan et al. [59] presented an adap-
tive PSO (APSO) by employing two following strategies. The first one evaluates the population distribution and particle
fitness and identifies the current search status. The second one utilizes an elitist learning strategy to help the global best
particle jump out of the likely local optima.

Sun et al. [48] proposed an improved vector PSO (IVPSO) to solve constrained optimization problems. Wang et al. [56]
introduced a self-adaptive learning strategy to improve the performance of CLPSO. Wang et al. [55] proposed another
improved CLPSO by employing a generalized opposition-based learning (GOBL). Hsul et al. [26] presented a novel PSO
algorithm for the multiple interference cancellation design of a linear phase array. To overcome the drawbacks of Perfor-
mance-dependent PSO [3], four different chaotic sequence are incorporated to enhance the exploration ability [9]. Chakr-
aborty et al. [5] presented a simple analysis of general multi-objective PSO. The results demonstrate that the inertial
factor and acceleration coefficients control the convergence behavior of the algorithm to the Pareto front in the objective
function space. In [10], PSO is regarded as a two-inputs and one-output feedback system. Two PID controllers are incorpo-
rated into the methodology of PSO to improve the diversity of swarm. Wang et al. [53] introduced generalized opposition-
based learning and Cauchy mutation to improve the performance of PSO. Simulation results demonstrate that the proposed
approach (GOPSO) obtains a promising performance for low-dimensional problems (D 6 30). However, GOPSO is not a good
choice to solve high-dimensional problems (D = 100). Lu et al. [36] proposed a new hybrid PSO algorithm, in which a real-
valued mutation (RVM) operator was embedded into three variants of PSO algorithms. In [33], Li et al. proposed a modified
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method which was integrated into the context of PSOs to enhance local search
ability. Simulation results demonstrated that the BFGS could effectively improve the performance of many PSO variants.
3. Diversity enhanced PSO with neighborhood search (DNSPSO)

In this section, a new PSO variant called diversity enhanced PSO with neighborhood search (DNSPSO) is proposed. The
DNSPSO employs two strategies including diversity enhanced mechanism and neighborhood search.

3.1. Diversity enhancing mechanism

Diversity loss is a serious problem for PSO algorithms during the search process. To maintain diversity of a swarm, some
excellent diversity enhancing strategies have been proposed. Riget [42] proposed a diversity-guided PSO, called ARPSO,
which defines a repulsion phase based on a modified velocity updating model. The basic PSO algorithm only employs an
attraction phase, in which particles are attracted by their pbests and the gbest. All particles in the swarm move quickly to
the same direction and the similarities among particles increase very fast. As a result, the diversity of the swarm decreases.
To avoid particles attracting too fast toward the best particles, a repulsion phase is introduced. When the diversity of swarm
drops below a predefined constant number dlow, the ARPSO switches to the repulsion phase, in which particles repel each
other, and then the diversity increases. When the diversity reaches to a high level (dhigh), the ARPSO switches back to the
attraction phase. The whole search process of ARPSO alternates between phase of exploiting and exploring - attraction
and repulsion - lower and higher diversities. However, ARPSO does not change the search behavior when the diversity re-
mains between dlow and dhigh. Based on the ARPSO, Pant et al. [40] proposed a middle phase (called positive conflict phase)
between attraction and repulsion. In the middle phase, there is neither a complete attraction nor a complete repulsion. Each
particle is attracted by its previous best particle and is repelled by the global best particle. In [47], Sun et al. introduced a
mutation operator to enhanced the swarm diversity. When the diversity is below dlow, a mutation is conducted on gbest
to increase the dissimilarities among particles, pbest and gbest.

Although the abovementioned diversity enhancing strategies have a good performance, they cost much computational
time to monitor and calculate the swarm diversity.
DiversityðtÞ ¼ 1
N

XN

i¼1

ffiXD

j¼1
xijðtÞ � xjðtÞ
� �2

r
; ð3Þ

xjðtÞ ¼
PN

i¼1xijðtÞ
N

: ð4Þ
To avoid the diversity calculation and maintain the swarm diversity, this paper presents a novel diversity enhanced
mechanism. For each particle Pi(t), a new particle Pi(t + 1) is generated by the PSO’s velocity and position updating equations.
By recombining Pi(t) and Pi(t + 1), a trial particle TPi(t + 1) = (TXi(t + 1), TVi(t + 1)) is generated as follows:
TXijðt þ 1Þ ¼
Xijðt þ 1Þ; if randjð0;1Þ < pr

XijðtÞ; otherwise

(
; ð5Þ

TVijðt þ 1Þ ¼ Vijðt þ 1Þ; ð6Þ

122 H. Wang et al. / Information Sciences 223 (2013) 119–135
where i = 1, 2, . . . , N, j = 1, 2, . . . , D, randj(0,1) is a uniform random number within [0,1], and pr is a predefined probability.
Each element of the position vector in TPi(t + 1) inherits the elements from Xi(t + 1) and Xi(t) with probabilities of pr and

1 � pr, respectively. This is similar to the crossover operation of Differential Evolution (DE) [44]. A clear visualization of how
to generate TPi(t + 1) is presented in Fig. 1. It can be seen from Eq. (5) that a smaller pr will increase the dissimilarities be-
tween TPi(t + 1) and Pi(t + 1). For an extreme case with pr = 0, TPi(t + 1) is equivalent to Pi(t). A larger pr will increase the sim-
ilarities between TPi(t + 1) and Pi(t + 1). For pr = 1, TPi(t + 1) is equal to Pi(t + 1).

After the recombination, a greedy selection mechanism is used as follows:
Piðt þ 1Þ ¼
TPiðt þ 1Þ; if f ðTPiðt þ 1ÞÞ 6 f ðPiðt þ 1ÞÞ
Piðt þ 1Þ; otherwise

�
; ð7Þ
where f(�) is the fitness evaluation function. Without loss of generality, this paper only considers minimization problems. If,
and only if, the trial particle TPi(t + 1) is better than Pi(t + 1), then replace Pi(t + 1) with TPi(t + 1); otherwise, the Pi(t + 1) re-
mains unchanged.

In PSO, particles tend to move the same position during the search process. It means that particles become similar with
increasing of iterations. When the trial particle TPi(t + 1) is selected into the next generation, the dissimilarities between
TPi(t + 1) and Pi(t + 1) will determine the dissimilarities among Pi(t + 1) (replaced by TPi(t + 1)) and the rest particles of
swarm. Larger dissimilarities in the swarm means a higher diversity. Therefore, the value of pr controls the swarm diversity.
A smaller pr makes larger dissimilarities between TPi(t + 1) and Pi(t + 1) resulting a higher diversity, while a larger pr will de-
crease the diversity.

Some similar algorithms have been proposed by hybridization of PSO and the DE schemes, such as [15,16,60]. However,
our approach differs from them. In [15,16], DE algorithm was used to evolve the pervious best particles (pbests) to enhance
the convergence. In [60], mutations provided by DE algorithm were conducted on the pbest.
3.2. Neighborhood search strategy

Like other stochastic search algorithms, PSO also suffers from the problem of premature convergence when solving highly
multimodal problems. Sometimes, the suboptima are near to the global optimum and the neighborhoods of trapped individ-
uals may contain the global optimum. At such situation, searching the neighborhoods of individuals is helpful to find better
solutions. Based on this idea, some excellent neighborhood search strategies have been applied to some nature-inspired
algorithms [11,35,37,57].

Kennedy designed four different population topologies, including circle, wheel, star, and random [28]. The reported re-
sults shows that population topologies with fewer connections might perform better on highly multimodal problems, while
highly interconnected populations would be better for unimodal problems. In [30], Kennedy and Mendes investigated the
effects of various population topologies on PSO to seek a better structure that performs well on a variety of test problems.
Suganthan [45] proposed a variable neighborhood operator. During the initial states of the optimization, the neighborhood is
an individual particle itself. As the number of generation increases, the neighborhood is gradually extended to include all
particles. Mendes et al. [37] proposed a fully informed PSO algorithm (FIPS), in which the neighbors of each particle, instead
of pbest and gbest, are used to update the velocity. Peram et al. [41] developed the fitness-distance-ratio based PSO (called
FDR-PSO), in which each particle is attracted towards the best previous positions visited by its neighbors. Hu and Eberhart
[25] used dynamic neighborhood PSO to solve multi-objective optimization problems. In each generation, after calculating
distance to every other particle, each particle finds its new neighbors. Among the new neighbors, each particle finds the local
best particle as the lbest. Ghosh et al. [20] presented a probabilistic analysis of the particle interaction and information ex-
change in an lbest PSO with variable random neighborhood topology.

Always, we are looking for a tradeoff between exploration and exploitation for EAs. The former indicates the global search
ability and makes the algorithm explore every region of the feasible search space, while the latter means the local search
ability, and accelerates the algorithm converging to the near-optimal solutions. Most improvements on EAs try to seek a
Fig. 1. The method of generating a trial particle TPi(t + 1).

H. Wang et al. / Information Sciences 223 (2013) 119–135 123
desirable balance between these two phases to suit different kinds of problems. To tackle this problem, this paper presents
one local and one global neighborhood search strategies, which are inspired by the neighborhood mutation operator in Dif-
ferential Evolution (DE) [11].

Assume that Pi, i = 1, 2, . . . , N is the ith particle in the swarm, where N is the population size. The N particles are organized
on a circle topology according to their indices, such that PN and P2 are the two immediate neighbors of P1 [11]. Fig. 2 presents
a circle topology, where there are 16 particles in the swarm. Although there are various neighborhood topologies (like star,
wheel, pyramid, 4-clusters, and circular) for PSO [28], the ring topology is simple and easy to implement. For each particle Pi,
its k-neighborhood radius consisting of particles Pi�k, . . . , Pi, . . . , Pi+k, where k is a integer 0 6 k 6 N�1

2 . Fig. 2 shows the
k-neighborhood radius, where k = 2. According to our empirical studies, the parameter k does not affect the performance
of DNSPSO. Different values of k obtain similar performance. In this paper, k is set to 2.

3.2.1. Local neighborhood search (LNS) strategy
For each particle, its neighborhood may cover better solutions. To improve the ability of exploitation, a local neighbor-

hood search (LNS) strategy is proposed. During searching the neighborhood of a particle Pi, a trial particle Li = (LXi,LVi) is gen-
erated as follows [52]:
LXi ¼ r1 � Xi þ r2 � pbesti þ r3 � ðXc � XdÞ; ð8Þ
LVi ¼ Vi; ð9Þ
where Xi is the position vector of the ith particle, pbesti is the previous best particle of Pi, Xc and Xd are the position vectors of
two random particles in the k-neighborhood radius of Pi, c, d 2 [i � k, i + k] ^ c – d – i, r1, r2 and r3 are three uniform random
numbers within (0,1), and r1 + r2 + r3 = 1. The random numbers r1, r2 and r3 are the same for all j = 1, 2, . . . , D, and they are
generated anew in each generation. A clear explanation of the mechanism of LNS is presented in Fig. 3a. The pbesti is the
previous best particle of Xi, so it is not on the circle topology. To keep the flying direction of Pi, the trial particle Li keeps
the same velocity of Pi.

The local neighborhood search strategy is effective when the local minima is near to the global optimum. Particles with
large jumps are easily trapped in local optima. The LNS could generate a trial particle near to the current search point. This is
helpful to find the global optimum step-by-step.
Fig. 2. The circle topology and k-neighborhood.

(a) The local neighborhood search (LNS) (b) The global neighborhood search (GNS)

Fig. 3. The local and global neighborhood search strategies.

124 H. Wang et al. / Information Sciences 223 (2013) 119–135
3.2.2. Global neighborhood search (GNS) strategy
Besides the LNS, a global neighborhood search (GNS) strategy is proposed to enhance the ability of exploration. When

searching the neighborhood of a particle Pi, another trial particle Gi = (GXi,GVi) is generated as follows [52]
GXi ¼ r4 � Xi þ r5 � gbest þ r6 � ðXe � Xf Þ; ð10Þ
GVi ¼ Vi; ð11Þ
where gbest is the global best particle, Xe and Xf are the position vectors of two random particles chosen for the entire swarm,
e, f 2 [1,N] ^ e – f – i, r4, r5 and r6 are three uniform random numbers within (0,1), and r4 + r5 + r6 = 1. The random numbers
r4, r5 and r6 are the same for all j = 1, 2, . . . , D, and they are generated anew in each generation. The GNS strategy is helpful to
solve multimodal problems. Particles are located at different regions. Therefore, if the current particle falls into local minima,
particles in other regions may pull the trapped particle forward.

For both LNS and GNS strategies, the newly generated trial particles, Li and Gi, keep the same velocity of their parent Pi.
This aims to follow the same flying direction and jumping size of their parent.

3.3. The proposed approach

The DNSPSO algorithm employs two strategies including diversity enhancing mechanism and neighborhood search oper-
ators. The former aims to indirectly enhance the swarm diversity, and the latter focuses on searching the neighbors of
particles.

In every generation, a trial particle TPi is generated by the recombination operator, Eqs. (eqdiv1) and (6). If TPi is better
than its parent Pi, then replace Pi with TPi; otherwise, we keep Pi unchanged. After this operation, the neighborhood search
strategy is conducted with pns probability. If the probability pns is satisfied, two trial particles, Li and Gi, are generated. Then,
the fittest particle among Pi, Li and Gi is selected as the new Pi.
Algorithm 1. The Proposed DNSPSO Algorithm
1 Uniformly randomly initialize each particle in the swarm;
2 Initialize pbest and gbest;
3 while FEs 6MAX_FEs do
4 for i = 1 to N do
5 Calculate the velocity of particle Pi according to Eq. (1);
6 Update the position of particle Pi according to Eq. (2);
7 Calculate the fitness value of Pi;
8 FEs++;

/� Diversity enhanced mechanism �/
9 Generate a new trial particle TPi according to Eqs. (5) and (6);
10 Calculate the fitness value of TPi;
11 FEs++;
12 Select a fitter one between Pi and TPi as the new Pi (see Eq. (7));
13 Update pbesti and gbest;
14 end
15 for i = 1 to N do

/� Neighborhood search strategy �/
16 if rand(0,1) 6 pns then
17 Generate a trial particle Li according to Eqs. (8) and (9);
18 Generate a trial particle Gi according to Eqs. (10) and (11);
19 Calculate the fitness values of Li and Gi;
20 FEs = FEs + 2;
21 Select the fittest one among Pi, Li and Gi as the new Pi;
22 end
23 Update pbesti and gbest;
24 end
25 end

The main steps of DNSPSO are described in Algorithm 1, where Pi is ith particle in the swarm, N is the population size, pns

is the probability of conducting neighborhood search, FEs is the number of fitness evaluations, and MAX_FEs is the maximum
number of function evaluations.

H. Wang et al. / Information Sciences 223 (2013) 119–135 125
4. Experimental verifications

4.1. Test problems

There are 15 benchmark functions used in the following experiments. These problems were utilized in previous studies
[34,53]. According to their properties, they are divided into four classes: unimodal and simple multimodal problems (f1 � f2),
unrotated multimodal problems (f3 � f7), rotated multimodal problems (f8 � f11), and high-dimensional shifted problems
(f12 � f15). All the problems used in this paper are minimization problems. The brief descriptions of these benchmark prob-
lems are listed in Table 1. More details about the definition of benchmark problems can be found in [34,50].
4.2. Parameter sensitivity analysis

The values of pr and pns may affect the performance of DNSPSO. To select better values of these two control parameters,
we investigated the performance of DNSPSO under variant pr and pns values. In this section, pr and pns are selected from the
set {0.0,0.3,0.6,0.9} and {0.0,0.2,0.4,0.6,0.8,1.0}, respectively. Therefore, there are 4 � 6 = 24 possible choices for the com-
bination of pr and pns.

For other parameters of DNSPSO, we used the following settings. The population size N was set to 40. w = 0.7298,
c1 = c2 = 1.49618, k = 2. For D = 30, the maximum number of FEs (MAX_FEs) was set to 200,000 [34]. For D = 100,
MAX_FEs = 5000 � D [50]. All the experiments were conducted 30 times, and the mean error values f(x) � f(xo) (f(xo) is
the global optimum of f(x)) were recorded.

For different choices of the mentioned parameters, there are 24 groups of results in total. To simplify these results, the
relatively good parameter settings are presented in Table 2. From the results, it can be seen that a smaller pr is suitable
for low-dimensional problems (f1 � f11), while a larger pr is helpful to solve high-dimensional problems (f12 � f15). As men-
tioned before, a smaller pr increases the diversity. This slows down the convergence rate of DNSPSO. That is one of the pos-
sible reasons that a smaller pr performs bad on high-dimensional problems. Though the performance of DNSPSO is not
sensitive to the value of pns, it does not mean that the neighborhood search does not work properly during the searching
process. According to our experiments, the performance of DNSPSO is very poor when pns = 0.0. Even if pns is set to 0.05,
DNSPSO also works very well.

To select the best group of parameter settings at a statistical level, average ranking of Friedman test is conducted accord-
ing to the suggestions of [13,17]. Table 3 shows the average rankings of DNSPSO with different parameter settings. As shown,
pr = 0.9, pns = 0.6 achieves the highest ranking. It demonstrates that pr = 0.9 and pns = 0.6 are the relatively best choices for the
test suite.
4.3. Effects of different strategies

The proposed approach employs two strategies: diversity enhancing mechanism and neighborhood searching. To inves-
tigate the effects of these two strategies, we studied the performance of standard PSO, PSO with diversity enhanced mech-
anism (DPSO), PSO with neighborhood search (NSPSO), and DNSPSO which includes both mechanisms. This will help to
verify the effectiveness of these strategies separately.

For the parameters pr and pns used in DPSO, NSPSO and DNSPSO, they are set to 0.9 and 0.6, respectively. For other param-
eters, we have used the same settings as descried in the Section 4.2.
Table 1
Benchmark problems used in the experiments, where D is the dimension of the functions, X 2 RD is the definition domain, and f(xo) is the global optimum of the
function.

Problems Name D X f(xo)

f1 Sphere function 30 [�100,100] 0
f2 Rosenbrock’s function 30 [�2.048,2.048] 0
f3 Ackley’s function 30 [�32.768,32.768] 0
f4 Griewanks’s function 30 [�600,600] 0
f5 Weierstrass function 30 [�0.5, 0.5] 0
f6 Rastrigin’s function 30 [�5.12,5.12] 0
f7 Nocontinuous Rastrigin’s function 30 [�5.12,5.12] 0
f8 Rotated Ackley’s function 30 [�32.768,32.768] 0
f9 Rotated Griewanks’s function 30 [�600,600] 0
f10 Rotated Weierstrass function 30 [�0.5, 0.5] 0
f11 Rotated Rastrigin’s function 30 [�5.12,5.12] 0
f12 Shifted Sphere function 100 [�100,100] �450
f13 Shifted Schwefel’s function 2.21 100 [�100,100] �450
f14 Shifted Rosenbrock’s function 100 [�100,100] 390
f15 Shifted Griewanks’s function 100 [�600,600] �180

Table 2
Mean error values achieved by DNSPSO with different pr and pns. The best results among the nine groups of parameter settings are shown in bold.

Functions D pr = 0.0 pr = 0.0 pr = 0.0 pr = 0.3 pr = 0.6 pr = 0.9 pr = 0.9 pr = 0.9 pr = 0.9
pns = 0.2 pns = 0.4 pns = 0.6 pns = 0.8 pns = 0.8 pns = 0.2 pns = 0.4 pns = 0.6 pns = 0.8
Mean error Mean error Mean error Mean error Mean error Mean error Mean error Mean error Mean error

f1 30 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f2 30 1.31E+01 1.53E+01 1.83E+01 2.49E+01 2.24E+01 1.93E+01 2.05E+01 2.01E+01 2.06E+01
f3 30 5.89E�16 5.89E�16 5.89E�16 5.89E�16 5.89E�16 5.89E�16 5.89E�16 5.89E�16 5.89E�16
f4 30 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f5 30 6.48E�13 3.27E�13 5.34E�13 1.61E�13 1.59E�13 2.04E�13 1.68E�13 1.40 E�13 2.63E�13
f6 30 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f7 30 0.00E+00 0.00E+00 0.00E+00 2.40E+01 3.84E�01 5.98E�02 0.00E+00 0.00E+00 0.00E+00
f8 30 5.89E�16 5.89E�16 5.89E�16 5.89E�16 5.89E�16 5.89E�16 5.89E�16 5.89E�16 5.89E�16
f9 30 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f10 30 2.35E�13 2.14 E�13 4.38E�13 3.98E+01 2.65E+01 3.71E+01 3.76E+01 2.69E+01 3.86E+01
f11 30 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f12 100 6.95E+04 8.71E+04 1.04E+05 4.08E+03 3.79E�01 3.57 E�13 1.95E�11 4.24E�11 7.39E�09
f13 100 5.23E+01 5.49E+01 5.39E+01 3.44E+01 3.76E+01 2.43E+01 3.34E+01 2.38E+01 2.70E+01
f14 100 3.94E+08 1.38E+09 3.12E+09 1.14E+08 1.00E+06 3.60E+02 2.36E+02 2.19E+02 2.78E+02
f15 100 1.08E+02 8.35E+01 4.99E+01 8.29E�02 2.90E�01 1.65E�01 5.46E�04 2.93 E�06 1.88E�02

Table 3
Average rankings achieved by Friedman test for DNSPSO with different parameter settings. The highest ranking
is shown in bold.

DNSPSO Rankings

pr = 0.0, pns = 0.2 4.63
pr = 0.0, pns = 0.4 4.57
pr = 0.0, pns = 0.6 4.30
pr = 0.3, pns = 0.8 4.27
pr = 0.6, pns = 0.8 4.73
pr = 0.9, pns = 0.2 5.40
pr = 0.9, pns = 0.4 5.64
pr = 0.9, pns = 0.6 6.30
pr = 0.9, pns = 0.8 5.17

Table 4
Mean error values achieved by PSO, NSPSO, DPSO and DNSPSO. The best results among the four algorithms are shown in bold.

Functions D PSO mean error NSPSO mean error DPSO mean error DNSPSO mean error

f1 30 2.95E�92 0.00E+00 5.33E�49 0.00E+00
f2 30 2.36E+01 1.84E+01 1.74E+01 2.01E+01
f3 30 1.50E+00 5.89E�16 1.34E+00 5.89E�16
f4 30 4.65E�02 0.00E+00 1.72E�02 0.00E+00
f5 30 2.98E+00 7.39E�13 1.78E�13 1.40E�13
f6 30 4.28E+01 0.00E+00 1.82E+01 0.00E+00
f7 30 1.60E+01 0.00E+00 9.27E+00 0.00E+00
f8 30 3.55E+00 9.55E�13 2.89E+00 5.89E�16
f9 30 1.97E�02 0.00E+00 1.11E�16 0.00E+00
f10 30 6.07E+00 5.86E�01 3.22E+01 2.69E+01
f11 30 7.36E+01 0.00E+00 6.95E+01 0.00E+00
f12 100 3.70E+04 9.17E+04 5.06E+04 4.24E�11
f13 100 3.92E+01 3.46E+01 3.81E+01 2.38E+01
f14 100 1.97E+02 1.22E+07 1.76E+07 2.19E+02
f15 100 7.90E+02 9.04E+01 8.39E+00 2.93E�06

126 H. Wang et al. / Information Sciences 223 (2013) 119–135
Table 4 presents the mean error values of the above four algorithms. From the comparison of NSPSO with PSO, NSPSO
achieved better results than PSO in all test cases except for f14. On this function, both NSPSO and DPSO hardly improved
the quality of solution. Because f14 is a shifted Rosenbrock function and many PSO variants hardly find the global optimum
which is inside a long, narrow, parabolic shaped flat valley. It shows the neighborhood search was effective for most test
functions. PSO performs better than DPSO on f1, f10, and f14, while DPSO outperforms PSO for the rest functions. The compar-
ison of DPSO with PSO demonstrates the effectiveness of the diversity enhanced mechanism.

By combining these two strategies, DNSPSO obtains excellent performance. It outperforms other three PSO algorithms on
the majority of the test functions. Specially for high-dimensional problems (f12 � f15), using a single strategy (diversity en-
hanced mechanism or neighborhood search) can hardly achieve promising solutions. For f12 and f15, both NSPSO and DPSO
fall into local minima, while DNSPSO achieves satisfactory results. The diversity enhancing mechanism is helpful to increase

H. Wang et al. / Information Sciences 223 (2013) 119–135 127
the swarm diversity, while it slows down the convergence rate. It can be seen from non-shifted and shifted Sphere functions
(f1 and f12), PSO obtains more accurate solutions compared to DPSO. The neighborhood search is based on the attraction of
pbest or gbest. This helps to accelerate the convergence rate of PSO, but runs the risk of losing swarm diversity. By hybrid-
ization of these two strategies, DNSPSO achieves a balance between the exploration and exploitation abilities.

The DNSPSO employs two strategies: diversity enhancing mechanism and neighborhood searching, which may cost addi-
tional computational time. To investigate how these strategies affect the computational time, we calculated the mean com-
putational time of PSO, NSPSO, DPSO and DNSPSO on the test suite. The computational configurations are listed as follows.

� System: Windows XP (SP3).
� CPU: Intel Core 2 Duo CPU T6400 (2.00 GHz).
� RAM: 2G.
� Language: C++.
� Compiler: Microsoft Visual C++6.0.
� MAX_FEs: 2.00E + 05 (D = 30) and 5000 � D(D = 100).

In the experiments, the same parameter settings are used as described in Section 4.2. The mean computational time of the
four algorithms on the test suite are listed in Table 5. As seen, DPSO consumes less time than PSO. The main reason is that
DPSO presents less iterations than PSO. In the experiments, all algorithms use the same MAX_FEs. For PSO, the maximum
number of generations (MAX_G) is MAX FEs

N , while the MAX_G of DPSO is MAX FEs
2�N . Because DPSO evaluates twice fitness values

every generation. For NSPSO, the MAX_G is MAX FEs
NþN�2�pns

¼ MAX FEs
2:2�N . So, NSPSO consumes less iterations than DPSO and PSO. The

results of computational time confirms that NSPSO spends less computational time than PSO and DPSO. For DNSPSO, the
MAX_G is MAX FEs

3:2�N . Though, DNSPSO spends less iterations than NSPSO, it spends more computational time. The main reason
is that the computational complexity of the diversity mechanism is higher than the neighborhood search strategy. The above
results demonstrates that the combination of diversity mechanism and neighborhood search do not increase additional
computational time for DNSPSO when the same MAX_FEs is used.
4.4. Comparison of DNSPSO with other state-of-the-art PSO variants

4.4.1. Comparison of DNSPSO with CPSO-H, CLPSO and APSO
This section presents a comparative study of DNSPSO with CPSO-H, CLPSO and APSO on the 15 test functions. To verify the

generality of our proposed strategies, we integrate the proposed diversity mechanism and neighborhood search strategy into
CLPSO. The combination of this new approach was called DNSCLPSO. The involved algorithms are listed as follows:

� Cooperative PSO (CPSO-H) [1].
� Comprehensive learning PSO (CLPSO) [34].
� Adaptive PSO (APSO) [59].
� PSO with generalized opposition-based learning (GOPSO) [53].
� Combining CLPSO with the proposed diversity mechanism and neighborhood search strategy (DNSCLPSO).
� Our approach DNSPSO.

The parameter settings of CLPSO-H and CLPSO are described in [34]. By the suggestions of [59], the same parameter set-
tings of ALPSO are used. For GOPSO and DNSPSO, w = 0.7298, c1 = c2 = 1.49618. The probability of using opposition in GOPSO
is set to 0.3. The parameters k, pr, pns used in DNSPSO are set to 2, 0.9, and 0.6, respectively. For DNSCLPSO, the same param-
Table 5
Mean computational time (in seconds) achieved by PSO, NSPSO, DPSO and DNSPSO.

Functions D PSO time NSPSO time DPSO time DNSPSO time

f1 30 0.84 0.74 0.83 0.75
f2 30 0.86 0.70 0.86 0.75
f3 30 1.29 1.13 1.25 1.14
f4 30 1.38 1.16 1.28 1.20
f5 30 43.46 42.17 42.76 43.72
f6 30 1.26 1.05 1.26 1.14
f7 30 1.74 1.56 1.73 1.48
f8 30 2.57 2.32 2.48 2.44
f9 30 2.60 2.38 2.52 2.74
f10 30 49.60 46.81 48.54 47.06
f11 30 2.45 2.18 2.36 2.35
f12 100 6.88 4.91 6.95 4.95
f13 100 8.06 7.16 8.13 7.80
f14 100 28.92 27.24 31.61 27.72
f15 100 20.70 16.80 19.06 16.89

128 H. Wang et al. / Information Sciences 223 (2013) 119–135
eter settings with CLPSO and DNSPSO are used. The above six PSO algorithms use the same population size (N = 40) and max-
imum number of fitness evaluations (MAX_FEs). For D = 30, MAX_FEs is set to 200,000 [34]. For D = 100, MAX_FEs is set to
5000 � D [53]. All the experiments are conducted 30 times, and the mean error values f(x) � f(xo) (f(xo) is the global optimum
of f(x)) and variances are recorded.

Results of mean error values and standard deviations achieved by the six PSO algorithms are listed in Table 6. The com-
parison results among DNSPSO and other algorithms are summarized as ‘‘w/t/l’’ in the last row of the table, which means that
DNSPSO wins in w functions, ties in t functions and loses in l functions, compared with its competitors.

From the results of Table 6, DNSPSO outperforms CPSO-H on 12 functions, while CPSO-H only achieves better results on 3
functions. CLPSO only obtains better performance than DNSPSO on f15, while DNSPSO outperforms CLPSO for the rest 14
functions. APSO achieves better results than DNSPSO on two functions, while DNSPSO performs better on the rest 13 func-
tions. Both GOPSO and DNSPSO can find the global optimum on six functions. For the rest 9 functions, DNSPSO wins 7, while
GOPSO only wins 2.

All algorithms fall into local minima on shifted and non-shifted Rosenbrock functions (f2 and f14), whose global optimum is
inside a long, parabolic shaped flat valley. Most PSO algorithms could easily find the valley, but hardly converge to the global
optimum. For shifted Schwefel function (f13), though DNSPSO achieves better solution than other algorithms, all the five PSO
algorithms fall into local minima because of the effects of dimension. For low-dimensional Schwefel function, many PSO algo-
rithms can find promising solutions. As dimension increases, the performance of these algorithms are seriously affected.

By combining CLPSO with our proposed strategies, DNSCLPSO achieves significant improvements on 11 functions. Spe-
cially for f3, f4, f9 and f10, DNSCLPSO is able to find the global optimum, while CLPSO falls into local optima. However, our
proposed approaches do not always work for all test functions. For f6 and f7, CLPSO achieved reasonable solutions, while
DNSCLPSO gets stuck. For f14, DNSCLPSO can hardly find good solutions.

Fig. 4 shows the convergence curves of the six PSO algorithms. This paper only presents four representative convergence
graphs on high-dimensional functions (f12 � f15). It can be seen that, for shifted Sphere and shifted Rosenbrock functions,
DNSPSO converges faster than other four algorithms during the evolution. For shifted Schwefel function, DNSPSO shows fas-
ter convergence speed at the last stage of the evolution. For shifted Griewank function, DNSPSO converges faster at the
beginning and the middle stages of the evolution than the other algorithms, while DNSCLPSO achieves a faster convergence
than that of the other algorithms at the last stage of the evolution.

In order to compare the performance of multiple algorithms on the test suite, we conduct Friedman test according to the
suggestions of [13,18]. Table 7 shows the average ranking of CPSO-H, CLPSO, APSO, GOPSO, DNSCLPSO and DNSPSO. The
highest ranking is shown in bold. As seen, the performance of the six algorithms ranks as follows: DNSPSO, DNSCLPSO, GOP-
SO, CLPSO, CPSO-H, and APSO. The highest average ranking is obtained by the DNSPSO algorithm. It demonstrates that DNS-
PSO is the best one among the six PSO algorithms.

To compare the performance differences among DNSPSO and the other four PSO algorithms, we conduct a Wilcoxon
signed-rank test [12,19]. Table 8 shows the resultant p-values when comparing among DNSPSO and the other five algo-
rithms. The p-values below 0.05 are shown in bold. From the results, it can be seen that DNSPSO is significantly better than
all algorithms except for GOPSO and DNSCLPSO. Although DNSPSO is not significantly better than GOPSO and DNSCLPSO,
DNSPSO performs better than them according to the average rankings shown in Table 7.

4.4.2. Comparison of DNSPSO with PSO based on real-valued mutation
Recently, Lu et al. [36] proposed a new hybrid PSO algorithm, in which a real-valued mutation (RVM) operator was

embedded into three variants of PSO algorithms. Experimental results on six benchmark functions showed that the RVM
can efficiently improve the performance of PSO variants. In this section, we present a comparative study of DNSPSO with
PSO variants based on RVM. The involved algorithms are listed as follows.
Table 6
Comparison results of mean function error values and standard deviations, where ‘‘w/t/l’’ means that DNSPSO wins in w functions, ties in t functions and loses in
l functions, compared with its competitors. The best results among the comparison are shown in bold.

Functions D CPSO-H [1] CLPSO [34] APSO [59] GOPSO [53] DNSCLPSO DNSPSO

f1 30 1.29E�36 ± 7.61E�36 1.23E�13 ± 3.09E�13 9.60E�66 ± 1.57E�65 0.00E+00 ± 0.00E+00 1.23E�50 ± 2.86E�50 0.00E+00 ± 0.00E+00
f2 30 1.37E+01 ± 9.86E+00 2.08E+01 ± 1.24E+01 1.83E+01 ± 1.46E+01 1.48E+01 ± 9.57E�01 2.64E+01 ± 1.38E+01 2.01E+01 ± 1.05E+01
f3 30 2.25E�14 ± 3.07E�14 1.85E�07 ± 2.70E�07 1.09E�14 ± 1.94E�14 3.43E–15 ± 1.59E�15 5.89E�16 ± 0.00E+00 5.89E�16 ± 0.00E+00
f4 30 1.90E�02 ± 8.81E�02 4.37E�09 ± 5.06E�08 1.20E�02 ± 9.14E�02 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
f5 30 4.74E�15 ± 3.67E�14 5.62E�07 ± 1.38E�06 4.77E�02 ± 4.08E�01 1.04E�08 ± 2.19E�08 0.00E+00 ± 0.00E+00 1.40E�13 ± 5.29E�14
f6 30 3.32E+00 ± 1.18E+01 1.50E�04 ± 6.96E�04 6.27E+00 ± 1.28E+01 0.00E+00 ± 0.00E+00 2.20E+00 ± 1.96E+00 0.00E+00 ± 0.00E+00
f7 30 6.67E�01 ± 6.05E+00 1.93E�03 ± 6.45E�03 2.27E+00 ± 2.45E+01 0.00E+00 ± 0.00E+00 3.35E+00 ± 1.76E+00 0.00E+00 ± 0.00E+00
f8 30 1.82E�01 ± 2.28E+00 1.07E�05 ± 3.77E�05 1.22E+00 ± 5.33E+00 9.59E�13 ± 0.00E+00 5.89E�16 ± 0.00E+00 5.89E�16 ± 0.00E+00
f9 30 2.30E�02 ± 1.01E�01 6.49E�05 ± 2.74E�04 1.38E�02 ± 8.30E�02 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
f10 30 8.33E+00 ± 2.00E+01 2.99E+00 ± 4.11E+00 8.40E+00 ± 1.37E+01 2.64E�13 ± 2.45E�13 0.00E+00 ± 0.00E+00 2.69E+01 ± 2.87E-01
f11 30 7.33E+01 ± 1.15E+02 5.48E+01 ± 4.69E+01 7.09E+01 ± 1.20E+02 0.00E+00 ± 0.00E+00 1.57E+01 ± 1.03E+01 0.00E+00 ± 0.00E+00
f12 100 7.29E+02 ± 2.46E+02 4.61E�10 ± 6.99E�10 1.63E+04 ± 2.17E+04 3.43E+03 ± 4.82E+02 1.87E�10 ± 5.73E�10 4.24E�11 ± 3.26E�11
f13 100 3.39E+01 ± 3.38E+01 4.47E+01 ± 3.71E+01 1.01E+02 ± 1.79E+02 3.37E+01 ± 3.63E+00 2.99E+01 ± 1.85E+01 2.38E+01 ± 1.84E+00
f14 100 1.07E+05 ± 3.13E+06 2.80E+02 ± 2.55E+02 1.95E+09 ± 3.12E+10 4.53E+07 ± 8.41E+06 1.02E+04 ± 6.17E+04 2.19E+02 ± 9.92E+01
f15 100 3.88E+00 ± 1.42E+01 1.50E�09 ± 1.06E�08 1.19E+02 ± 1.53E+03 2.15E+00 ± 1.73E�01 7.75 E�10 ± 3.52E�10 2.93E�06 ± 6.61E�06
w/t/l 12/0/3 14/0/1 13/0/2 7/6/2 8/4/3 –

(a) Shifted Sphere (f 12) (b)Shifted Schwefel 2.21 (f13)

(c) Shifted Rosenbrock (f14) (d) Shifted Griewank (f15)

Fig. 4. The convergence curves of CPSO-H, CLPSO, APSO, GOPSO, DNSCLPSO and DNSPSO on high-dimensional functions (f12 � f15).

Table 7
Average rankings achieved by Friedman test for the six PSO algorithms. The
highest ranking is shown in bold.

Algorithms Rankings

DNSPSO 4.87
DNSCLPSO 4.33
GOPSO 4.27
CLPSO 3.07
CPSO-H 2.60
APSO 1.87

Table 8
Wilcoxon test between DNSPSO with other PSO algorithms on functions f1�f15.
The p-values below 0.05 are shown in bold.

DNSPSO vs. p-Values

CPSO-H 4.68E�02
CLPSO 1.99E�02
APSO 1.46E�02
GOPSO 2.14E�01
DNSCLPSO 1.31E�01

H. Wang et al. / Information Sciences 223 (2013) 119–135 129

Administrator
Highlight

Table 9
Comparison results of mean fitness error values and standard deviations, where ‘‘w/t/l’’ means that DNSPSO wins in w functions, ties in t functions and loses in l
functions, compared with its competitors. The best results among the comparison are shown in bold.

Functions BPSO-RVM [36] CPSO-RVM [36] CBPSO-RVM [36] PSO-GM [21] DNSPSO

Sphere function 3.15E�38 ± 1.77E�37 2.62E�116 ± 1.70E�115 1.65E�146 ± 2.48E�146 5.25E�53 ± 1.52E�52 0.00E+00 ± 0.00E+00
Quadric function 2.73E+01 ± 2.45E+01 2.84E�04 ± 5.24E�04 3.25E�21 ± 1.16E�20 5.63E�04 ± 9.27E�04 1.03E�125 ± 5.19E�126
Rosenbrock

function
1.82E+01 ± 8.09E+00 1.22E+01 ± 4.29E+01 2.41E+00 ± 3.46E+00 3.70E+00 ± 4.05E+00 7.06E+00 ± 8.25E+00

Griewank
function

9.20E�03 ± 1.10E�02 6.80E�03 ± 1.16E�02 7.20E�03 ± 1.03E�02 3.84E�04 ± 3.20E�03 0.00E+00 ± 0.00E+00

Rastrigin function 1.17E+01 ± 2.52E+01 2.86E�01 ± 1.88E+01 1.68E�13 ± 1.05E�12 4.56E+00 ± 1.10E+01 0.00E+00 ± 0.00E+00
Ackley function 1.22E�14 ± 3.38E�15 1.52E�14 ± 2.83E�15 1.17E�14 ± 3.46E�15 8.74E�14 ± 2.16E�15 5.89E�16 ± 0.00E+00
w/t/l 6/0/0 6/0/0 5/0/1 5/0/1 –

130 H. Wang et al. / Information Sciences 223 (2013) 119–135
� BPSO (standard PSO) with RVM (BPSO-RVM) [36].
� CPSO (PSO with constriction factor) and RVM (CPSO-RVM) [36].
� CBPSO (PSO with both constriction factor and inertia weight) with RVM (CBPSO-RVM) [36].
� PSO with Gaussian mutation (PSO-GM) [21].
� Our approach DNSPSO.

For all algorithms, the same settings are used for the common parameters. By the suggestions of [36], the population size
(N) and the maximum number of fitness evaluations (MAX_FEs) are set to 20 and 10,000 � 20, respectively (In [36], the max-
imum number of generations is set to 10,000.).

Table 9 presents the comparison results of mean fitness error values and standard deviations on six benchmark functions.
The comparison results among DNSPSO and other four algorithms are summarized as ‘‘w/t/l’’ in the last row of the table. As
seen, DNSPSO outperforms BPSO-RVM and CPSO-RVM on all test functions. CBPSO-RVM and PSO-GM achieve better results
than DNSPSO on Ronsenbrock function, while DNSPSO performs better on the rest five functions.
4.5. Comparison results on CEC 2005 benchmarks

To further verify the performance of DNSPSO, a set of ten CEC 2005 shifted and rotated benchmark functions are used in
this section. Table 10 presents simple descriptions of these functions. More detailed definitions of them can be found in [46].
In the experiments, DNSPSO is compared with five other PSO algorithms. The involved algorithms are listed as follows:

� Cooperative PSO (CPSO-H) [1].
� Comprehensive learning PSO (CLPSO) [34].
� Adaptive PSO (APSO) [59].
� PSO with generalized opposition-based learning (GOPSO) [53].
� Combining CLPSO with the proposed diversity mechanism and neighborhood search strategy (DNSCLPSO).
� Our approach DNSPSO.

For the above six algorithms, the same parameter settings are used as described in Section 4.4 except for MAX_FEs. For
this test suite, the MAX_FEs is set to 3.00E+05 according to the suggestions of [46]. For each test function, each algorithm is
run 25 times. Throughout the experiments, the mean function error values are reported.

Comparison results of mean function error values and standard deviations on the CEC 2005 benchmarks are listed in
Table 11, where the best is shown in bold. The comparison results between DNSPSO and other algorithms are summarized
as ‘‘w/t/l’’ in the last row of the table, which means that DNSPSO wins in w functions, ties in t functions and loses in l func-
tions, compared with its competitors.
Table 10
The ten CEC 2005 benchmark functions used in the experiments, where D is the dimension, and f(xo) is the global optimum.

Functions Name D f(xo)

fcec051
Shifted Sphere Function 30 �450

fcec052
Shifted Schwefel’s Problem 1.2 30 �450

fcec053
Shifted Rotated High Conditioned Elliptic Function 30 �450

fcec054
Shifted Schwefel’s Problem 1.2 with Noise 30 �450

fcec055
Schwefel’s Problem 2.6 30 �310

fcec056
Shifted Rosenbrock’s Function 30 390

fcec057
Shifted Rotated Griewank’s Function 30 �180

fcec058
Shifted Rotated Ackley’s Function 30 �140

fcec059
Shifted Rastrigin’s Function 30 �330

fcec0510
Shifted Rotated Rastrigin’s Function 30 �330

Table 11
Comparison results of mean function error values and standard deviations on the CEC 2005 benchmarks, where ‘‘w/t/l’’ means that DNSPSO wins in w functions,
ties in t functions and loses in l functions, compared with its competitors. The best results among the comparison are shown in bold.

Functions CPSO-H [1] CLPSO [34] APSO [59] GOPSO [53] DNSCLPSO DNSPSO

fcec051
4.26E�02 ± 1.25E+00 8.01E�13 ± 3.40E�12 7.20E�14 ± 1.38E�13 5.86E�14 ± 6.37E�14 6.53E�14 ± 5.41E�14 4.29E�14 ± 3.96E�14

fcec052
1.34E+03 ± 1.14E+04 3.38E+03 ± 3.19E+03 1.82E�02 ± 9.53E�02 1.26E�04 ± 2.28E�04 2.85E�03 ± 1.52E�03 2.95E�06 ± 6.21E�06

fcec053
1.24E+00 ± 3.64E+01 4.06E�09 ± 1.27E�08 7.39E�14 ± 1.43E�14 8.31E+06 ± 6.43E+06 6.72E�01 ± 2.30E+00 5.21E+05 ± 4.17E+05

fcec054
1.07E+04 ± 7.25E+04 1.12E+04 ± 1.57E+04 9.46E+02 ± 3.30E+03 5.48E+02 ± 4.39E+02 6.26E+02 ± 4.91E+02 3.79E+00 ± 2.45E+00

fcec055
2.74E+04 ± 3.12E+04 1.86E+04 ± 1.26E+04 2.21E+02 ± 3.27E+02 6.58E+03 ± 5.16E+03 8.41E+03 ± 2.56E+03 2.98E+03 ± 6.24E+03

fcec056
1.73E+03 ± 4.23E+04 1.04E+01 ± 5.67E+01 2.99E+01 ± 1.68E+02 1.53E+01 ± 1.34E+01 1.95E+01 ± 2.03E+01 1.16E+01 ± 8.28E+00

fcec057
1.52E+03 ± 1.68E+03 5.42E+03 ± 1.43E+03 5.63E+03 ± 2.85E+03 1.20E+00 ± 1.17E+00 4.28E+01 ± 2.55E+01 2.96E�02 ± 3.76E�02

fcec058
2.09E+01 ± 3.73E�01 2.10E+01 ± 1.91E�01 2.12E+01 ± 3.57E�01 2.09E+01 ± 2.39E�01 2.09E+01 ± 3.04E�01 2.09E+01 ± 1.83E�01

fcec059
3.55E+01 ± 5.88E+01 1.99E�01 ± 2.59E+00 5.74E+00 ± 9.09E+00 8.36E+01 ± 3.27E+01 3.36E+01 ± 1.69E+01 6.57E+01 ± 2.57E+01

fcec0510
2.21E+02 ± 2.87E+02 1.42E+02 ± 8.45E+01 1.33E+02 ± 3.00E+02 2.98E+01 ± 1.43E+01 1.52E�06 ± 2.13E�07 0.00E+00 ± 0.00E+00

w/t/l 7/1/2 7/0/3 7/0/3 9/1/0 7/1/2 –

Table 12
Average rankings achieved by Friedman test for the six PSO algorithms on the CEC
2005 benchmarks. The highest ranking is shown in bold.

Algorithms Rankings

DNSPSO 4.85
DNSCLPSO 3.95
GOPSO 3.85
APSO 3.30
CLPSO 2.90
CPSO-H 2.15

H. Wang et al. / Information Sciences 223 (2013) 119–135 131
From the results of Table 11, DNSPSO achieves better results than CPSO-H on 7 functions, while CPSO-H performs better
than DNSPSO on 2 functions. Compared to CLPSO and APSO, DNSPSO outperforms them on 7 functions, while CLPSO and
APSO achieves better results on three functions. DNSPSO surpasses GOPSO on all functions except for fcec058 . On this function,
both of them fall into the same local optimum.

By hybridization of CLPSO and our proposed strategies, DNSCLPSO performs better than CLPSO on 7 functions. It demon-
strates that our proposals are helpful to improve the performance of PSO variants.

Table 12 shows the average ranking of CPSO-H, CLPSO, APSO, GOPSO, DNSCLPSO and DNSPSO. The highest ranking is
shown in bold. As seen, the performance of the five algorithms can be sorted by average ranking into the following order:
DNSPSO, DNSCLPSO, GOPSO, APSO, CLPSO, and CPSO-H. The highest average ranking is obtained by the DNSPSO algorithm.
It demonstrates that DNSPSO is the best one among the six PSO algorithms for the CEC 2005 benchmarks.
Table 13
The CEC 2010 large-scale benchmark functions used in the experiments, where D is the dimension, and f(xo) is the global optimum.

Functions Name D f(xo)

F1 Shifted Elliptic Function 1000 0
F2 Shifted Rastrigin’s Function 1000 0
F3 Shifted Ackley’s Function 1000 0
F4 Single-group Shifted and m-rotated Elliptic Function 1000 0
F5 Single-group Shifted and m-rotated Rastrigin’s Function 1000 0
F6 Single-group Shifted and m-rotated Ackley’s Function 1000 0
F7 Single-group Shifted m-dimensional Schwefel’s Problem 1.2 1000 0
F8 Single-group Shifted m-dimensional Rosenbrock’s Function 1000 0
F9 D

2m-Group Shifted and m-rotated Elliptic Function 1000 0

F10 D
2m-Group Shifted and m-rotated Rastrigin’s Function 1000 0

F11 D
2m-Group Shifted and m-rotated Ackley’s Function 1000 0

F12 D
2m-Group Shifted m-dimensional Schwefel’s Problem 1.2 1000 0

F13 D
2m-Group Shifted m-dimensional Rosenbrock’s Function 1000 0

F14 D
m-Group Shifted and m-rotated Elliptic Function 1000 0

F15 D
m-Group Shifted and m-rotated Rastrigin’s Function 1000 0

F16 D
m-Group Shifted and m-rotated Ackley’s Function 1000 0

F17 D
m-Group Shifted m-dimensional Schwefel’s Problem 1.2 1000 0

F18 D
m-Group Shifted m-dimensional Rosenbrock’s Function 1000 0

F19 Shifted Schwefel’s Problem 1.2 1000 0
F20 Shifted Rosenbrock’s Function 1000 0

132 H. Wang et al. / Information Sciences 223 (2013) 119–135
4.6. Comparison results on CEC 2010 large-scale benchmarks

In Section 4.1, the high-dimensional problems (f12-f14) are separable. To test more complex and nonseparable problems,
the CEC 2010 large-scale benchmarks are used in this section. Table 13 presents simple descriptions of these functions. More
detailed definitions of them can be found in [49].

In the experiments, DNSPSO is compared with CLPSO, GOPSO, DNSCLPSO and the competition winner of CEC 2010 Special
Session and Competition on Large Scale Global Optimization (MA-SW-Chains) [39]. MA-SW-Chains is a memetic algorithm,
which assigns to each individual a local search intensity that depends on its features, by chaining different local search appli-
cations. Here, we do not compare DNSPSO with APSO and CPSO-H on this test suite, because these two algorithms are worse
than CLPSO and GOPSO.

The parameter settings of these five algorithms are listed as follows. For CLPSO, GOPSO, DNSCLPSO and DNSPSO, the pop-
ulation size is set to 100. For the rest parameters, the same settings are used as described in Section 4.4. For MA-SW-Chains,
the same parameter settings are used as [39]. By the suggestions of [49], the maximum number of fitness evaluations
(MAX_FEs) is set to 3.00E+06 for all algorithms. Each algorithm is run 25 times for a function. Throughout the experiments,
the mean function values and standard deviations are reported.

Comparison results of mean function values and standard deviations on the CEC 2010 large-scale benchmarks are pre-
sented in Table 14, where the best and the second best results are highlighted in boldface and italic, respectively. The com-
parison results between DNSPSO and other algorithms are summarized as ‘‘w/t/l’’ in the last row of the table, which means
that DNSPSO wins in w functions, ties in t functions and loses in l functions, compared with its competitors.

From the results of Table 14, DNSPSO outperforms CLPSO on 19 functions, while CLPSO only achieves better results on f5.
DNSPSO surpasses GOPSO on all test functions. By combining CLPSO with our proposed strategies, DNSCLPSO achieves sig-
nificant improvements on most functions. DNSCLPSO outperforms DNSPSO on seven functions, while DNSPSO obtains better
results on the rest 13 functions. However, DNSPSO and other three PSO variants are not suitable for large-scale optimization
Table 14
Comparison results of mean function values and standard deviations on the CEC 2010 large-scale benchmarks, where ‘‘w/t/l’’ means that DNSPSO wins in w
functions, ties in t functions and loses in l functions, compared with its competitors.

Functions CLPSO [34] GOPSO [53] MA-SW-Chains [39] DNSCLPSO DNSPSO

F1 7.80E+08 ± 6.79E+07 1.13E+10 ± 2.37E+09 2.10E�14 ± 1.99E�14 1.67E+08 ± 7.30E+06 1.87E+07 ± 1.73E+06
F2 6.06E+03 ± 1.40E+02 9.25E+03 ± 5.62E+03 8.10E+02 ± 5.88E+01 5.66E+03 ± 8.29E+01 5.85E+03 ± 4.23E+02
F3 2.04E+01 ± 8.29E�02 1.97E+01 ± 7.21E�02 7.28 E�13 ± 3.43E�13 1.91E+01 ± 7.89E�01 1.93E+01 ± 4.44E�02
F4 9.98E+13 ± 9.44E+12 1.92E+13 ± 1.04E+12 3.53E+11 ± 3.12E+10 8.99E+12 ± 1.22E+12 2.25E+12 ± 1.96E+11
F5 1.44E+08 ± 2.63E+07 1.62E+08 ± 1.46E+08 1.68E+08 ± 1.04E+08 8.52E+07 ± 1.43E+07 1.57E+08 ± 2.32E+07
F6 6.68E+06 ± 7.99E+05 1.10E+07 ± 2.33E+07 8.14E+04 ± 2.84E+05 2.41E+01 ± 9.95E�01 1.75E+06 ± 2.75E+05
F7 9.03E+09 ± 8.80E+08 1.41E+09 ± 2.62E+09 1.03E+02 ± 8.70E+01 6.57E+08 ± 2.44E+08 8.60E+06 ± 2.55E+05
F8 1.11E+08 ± 1.40E+07 9.68E+07 ± 1.24E+10 1.41E+07 ± 3.68E+07 9.19E+07 ± 3.50E+07 1.31E+07 ± 4.65E+06
F9 8.96E+09 ± 1.29E+08 4.28E+10 ± 2.73E+10 1.41E+07 ± 1.15E+06 1.57E+09 ± 6.43E+07 3.16E+08 ± 2.49E+06
F10 1.24E+04 ± 2.80E+02 9.69E+03 ± 1.28E+04 2.07E+03 ± 1.44E+02 7.63E+03 ± 2.57E+01 6.90E+03 ± 1.88E+02
F11 2.28E+02 ± 1.03E�01 2.01E+02 ± 1.35E+02 3.80E+01 ± 7.35E+00 1.68E+02 ± 9.13E+00 1.76E+02 ± 5.74E+00
F12 7.26E+06 ± 1.08E+06 5.91E+06 ± 2.61E+06 3.62E�06 ± 5.92E�07 1.00E+06 ± 5.83E+03 2.34E+05 ± 1.81E+04
F13 6.73E+08 ± 1.55E+08 5.23E+09 ± 3.28E+09 1.25E+03 ± 5.72E+02 2.20E+08 ± 3.41E+07 1.15E+06 ± 1.81E+05
F14 2.09E+10 ± 7.32E+08 5.48E+10 ± 4.16E+10 3.11E+07 ± 1.93E+06 3.15E+09 ± 8.62E+07 3.81E+09 ± 7.15E+07
F15 1.47E+04 ± 2.49E+02 1.24E+04 ± 9.40E+03 2.74E+03 ± 1.22E+02 8.26E+03 ± 8.78E+01 7.52E+03 ± 4.34E+01
F16 4.24E+02 ± 2.85E�01 3.97E+02 ± 2.58E+02 9.98E+01 ± 1.40E+01 4.04E+02 ± 9.27E�01 3.86E+02 ± 4.15E�01
F17 1.15E+07 ± 1.04E+06 1.05E+07 ± 8.18E+06 1.24E+00 ± 1.25E�01 1.56E+06 ± 2.41E+04 6.13E+05 ± 6.03E+03
F18 5.69E+10 ± 8.51E+09 5.46E+11 ± 7.19E+10 1.30E+03 ± 4.36E+02 2.81E+10 ± 3.05E+09 2.29E+07 ± 9.39E+06
F19 3.82E+07 ± 8.43E+06 8.78E+06 ± 5.42E+06 2.85E+05 ± 1.78E+04 5.05E+06 ± 7.09E+04 5.33E+06 ± 1.66E+06
F20 8.44E+10 ± 2.18E+09 2.22E+11 ± 3.15E+10 1.07E+03 ± 7.29E+01 4.23E+10 ± 3.61E+09 2.02E+08 ± 1.92E+08
w/t/l 19/0/1 20/0/0 2/0/18 13/0/7 –

Table 15
Average rankings achieved by Friedman test for the CEC 2010 large-scale benchmarks. The highest ranking is
shown in bold.

Algorithms Rankings

MA-SW-Chains 4.70
DNSPSO 3.70
DNSCLPSO 3.40
GOPSO 1.65
CLPSO 1.55

H. Wang et al. / Information Sciences 223 (2013) 119–135 133
problems. Compared to the competition winner of CEC 2010 Special Session on Large-Scale Global Optimization (MA-SW-
Chains) [39], DNSPSO performs better than MA-SW-Chains on only two functions.

Table 15 shows the average ranking of CLPSO, GOPSO, MA-SW-Chains, DNSCLPSO and DNSPSO. The highest ranking is
shown in bold. As seen, the performance of the five algorithms can be sorted by average ranking into the following order:
MA-SW-Chains, DNSPSO, DNSCLPSO, GOPSO, and CLPSO. The best and the second best algorithms are MA-SW-Chains and
DNSPSO, respectively.

5. Conclusions

This paper presents an enhanced PSO algorithm called DNSPSO to solve complex optimization problems. The proposed
approach employs two strategies including a diversity enhancing mechanism and two neighborhood search strategies.
The former strategy is helpful to increase the swarm diversity by adjusting the dissimilarities among particles. The latter
strategy is beneficial for accelerating the convergence rate because of the attraction of the previous best particles and the
global best particle. By combining these two strategies, DNSPSO achieves a trade-off between the exploration and exploita-
tion abilities. To verify the performance of DNSPSO, different types of benchmark functions are tested in the experiments.

The values of the parameters pr and pns affect the performance of DNSPSO. Simulation results show that fixed pr and pns

are not suitable for all functions. A smaller pr works well on low-dimensional functions, while a larger pr is suitable for high-
dimensional functions. The values of pns does not seriously affect the performance of DNSPSO and pns 2 (0,1) can achieve
good results.

PSO based on diversity enhancing mechanism (DPSO) or on neighborhood search (NSPSO) cannot achieve promising re-
sults. By combining them, DNSPSO obtains an excellent performance. The results of mean computational time shows that our
proposed algorithm does not increase computational time compared with the standard PSO under the same maximum num-
ber of fitness evaluations.

For the low-dimensional problems including two kinds of benchmarks, DNSPSO achieves better results than CPSO-H,
CLPSO, APSO, GOPSO and PSO with RVM. By integrating our proposed strategies into CLPSO, DNSCLPSO obtains significantly
improvements. For high-dimensional problems, though DNSPSO outperforms CLPSO, GOPSO and DNSCLPSO, all these PSO
variants are not good choices for the CEC 2010 large-scale benchmarks.

The parameter k (the neighborhood radius) may affect the effectiveness of the neighborhood search. How to tune k will be
investigated in the future work.

Acknowledgments

The authors thank the editor and anonymous reviewers for their detailed and constructive comments that help us to in-
crease the quality of this work. This work is supported by the Science and Technology Plan Projects of Jiangxi Provincial Edu-
cation Department (Nos. GJJ12641, GJJ12633, GJJ12307), the Youth Foundation of Nanchang Institute of Technology (No.
2012KJ021), and the National Natural Science Foundation of China (Nos. 61070008, 61165004, 61261039).

References

[1] F. van den Bergh, A.P. Engelbrecht, A cooperative approach to particle swarm optimization, IEEE Transactions on Evolutionary Computation 8 (3)
(2004) 225–239.

[2] F. van den Bergh, A.P. Engelbrecht, A study of particle swarm optimization particle trajectories, Information Sciences 176 (2006) 937–971.
[3] X.J. Cai, Z.H. Cui, J.C. Zeng, Y. Tan, Performance-dependent adaptive particle swarm optimization, International Journal of Innovative Computing,

Information and Control 3 (6B) (2007) 1697–1706.
[4] A. Cervantes, I.M. Galván, P. Isasi, AMPSO: a new particle swarm method for nearest neighborhood classification, IEEE Transactions on Systems, Man

and Cybernetics – Part B: Cybernetics 39 (5) (2009) 1082–1091.
[5] P. Chakraborty, S. Das, G.G. Roy, A. Abraham, On convergence of the multi-objective particle swarm optimizers, Information Sciences 181 (8) (2011)

1411–1425.
[6] Y.P. Chen, W.C. Peng, M.C. Jian, Particle swarm optimization with recombination and dynamic linkage discovery, IEEE Transactions on Systems, Man

and Cybernetics – Part B: Cybernetics 37 (6) (2007) 1460–1470.
[7] S.C. Chu, P.W. Tsai, Computational intelligence based on behaviors of cats, international journal of innovative computing, International Journal of

Innovative Computing, Information and Control 3 (1) (2007) 163–173.
[8] M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary

Computation 6 (2002) 58–73.
[9] Z.H. Cui, X.J. Cai, J.C. Zeng, Chaotic performance-dependent particle swarm optimization, International Journal of Innovative Computing, Information

and Control 5 (4) (2009) 951–960.
[10] Z.H. Cui, X.J. Cai, J.C. Zeng, Y. Yin, PID-controlled particle swarm optimization, Journal of Multiple-Valued Logic and Soft Computing 16 (6) (2010) 585–

610.
[11] S. Das, A. Abraham, U. Chakraborty, A. Konar, Differential evolution using a neighborhood-based mutation operator, IEEE Transactions on Evolutionary

Computation 13 (3) (2009) 526–553.
[12] J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research 7 (2006) 1–30.
[13] J. Derrac, S. GarcÍa, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary

and swarm intelligence algorithms, Swarm and Evolutionary Computation 1 (1) (2011) 3–18.
[14] M. Dorigo, V. Maniezzo, A. Colorni, The ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man and Cybernetics

– Part B: Cybernetics 26 (1996) 29–41.
[15] M.G. Epitropakis, V.P. Plagianakos, M.N. Vrahatis, Evolving cognitive and social experience in particle swarm optimization through differential

evolution, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2010, pp. 1–8.

134 H. Wang et al. / Information Sciences 223 (2013) 119–135
[16] M.G. Epitropakis, V.P. Plagianakos, M.N. Vrahatis, Evolving cognitive and social experience in particle swarm optimization through differential
evolution: a hybrid approach, Information Sciences 216 (2012) 50–92.

[17] S. GarcÍa, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational
intelligence and data mining: experimental analysis of power, Information Sciences 180 (20) (2010) 2044–2064.

[18] S. GarcÍa, F. Herrera, An extension on Statistical comparisons of classifiers over multiple data sets for all pairwise comparisons, Journal of Machine
Learning Research 9 (2008) 2677–2694.

[19] S. GarcÍa, D. Molina, M. Lozano, F. Herrera, A study on the use of nonparametric tests for analyzing the evolutionary algorithms’ behaviour: a case study
on the CEC’2005 special session on real parameter optimization, Journal Heuristics 15 (2009) 617–644.

[20] S. Ghosh, S. Das, D. Kundu, K. Suresh, A. Abraham, Inter-particle communication and search-dynamics of lbest particle swarm optimizers: an analysis,
Information Sciences 182 (1) (2012) 156–168.

[21] N. Higashi, H. Iba, Particle swarm optimization with Gaussian mutation, in: Proceedings of the IEEE Swarm Intelligence Symposium, 2003, pp. 72–79.
[22] S.Y. Ho, H.S. Lin, W.H. Liauh, S.H. Ho, OPSO: orthogonal particle swarm optimization and its application to task assignment problems, IEEE Transactions

on Systems, Man and Cybernetics – Part A: Systems and Humans 38 (2) (2008) 288–298.
[23] S. Hsieh, T. Sun, C. Liu, S. Tsai, Efficient population utilization strategy for particle swarm optimizer, IEEE Transactions on Systems, Man and Cybernetics

– Part B: Cybernetics 39 (2) (2009) 444–456.
[24] J. Hu, J. Zeng, Y. Tan, A diversity-guided particle swarm optimizer for dynamic environments, in: Proceedings of Life System Modeling and Simulation,

2007, pp. 239–247.
[25] X. Hu, R.C. Eberhart, Multiobjective optimization using dynamic neighborhood particle swarm optimization, in: Proceedings of the Congress

Evoluationary Computer, 2002, pp. 1677–1681.
[26] C.H. Hsul, W.J. Shyr, K.H. Kuo, Optimizing multiple interference cancellations of linear phase array based on particle swarm optimization, Journal of

Information Hiding and Multimedia Signal Processing 1 (4) (2010) 292–300.
[27] D. Karaboga, An Idea Based on Honey BEE Swarm for Numerical Optimization, Technical report TR06, Computer Engineering Department, Erciyes

University, Turkey, 2005.
[28] J. Kennedy, Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance, in: Proceedings of IEEE Congress on

Evolutionary Computation, 1999, pp. 1391–1938.
[29] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
[30] J. Kennedy, R. Mendes, Population structure and particle swarm performance, in: Proceedings of IEEE Congress on Evolutionary Computation, 2002,

1671–1676.
[31] C. Li, S. Yang, An adaptive learning particle swarm optimizer for function optimization, in: Proceedings of the Congress Evoluationary Computer, 2009,

pp. 381–388.
[32] C. Li, S. Yang, T.T. Nguyen, A self-learning particle swarm optimizer for global optimization problems, IEEE Transactions on Systems, Man, and

Cybernetics – Part B: Cybernetics 42 (3) (2012) 627–646.
[33] S. Li, M.T. Tan, I.W. Tsang, J.T. Kwok, A hybrid PSO-BFGS strategy for global optimization of multimodal functions, IEEE Transactions on Systems, Man,

and Cybernetics – Part B: Cybernetics 41 (4) (2011) 1003–1014.
[34] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE

Transactions on Evolutionary Computation 10 (2006) 281–295.
[35] H. Liu, A. Abraham, An hybrid fuzzy variable neighborhood particle swarm optimization algorithm for solving quadratic assignment problems, Journal

of Universal Computer Science 13 (9) (2007) 1309–1331.
[36] H. Lu, P. Sriyanyong, Y.H. Song, T. Dillon, Experimental study of a new hybrid PSO with mutation for economic dispatch with non-smooth cost function,

International Journal of Electrical Power and Energy 32 (9) (2010) 921–935.
[37] R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better, IEEE Transactions on Evolutionary Computation 8 (3) (2004)

204–210.
[38] A.S. Mohais, R. Mendes, C. Ward, C. Posthoff, Neighborhood re-structuring in particle swarm optimization, in: Proceedings of Australian Conference on

Artificial Intelligence, 2005, pp. 776–785.
[39] D. Molina, M. Lozano, F. Herrera, MA-SW-Chains: Memetic algorithm based on local search chains for large scale continuous global optimization, in:

Proceedings of IEEE Congress Evolutionary Computation, 2010, pp. 3153–3160.
[40] M. Pant, T. Radha, V.P. Singh. A simple diversity guided particle swarm optimization, in: Proceedings of IEEE Congress Evolutionary Computation, 2007,

pp. 3294–3299.
[41] T. Peram, K. Veeramachaneni, C.K. Mchan, Fitness-distance-ratio based particle swarm optimization, in: Proceedings of the IEEE Swarm Intelligence

Symposium, 2003, pp. 174–181.
[42] J. Riget, J.S. Vesterstom, Adiversity-Guided Particle Swarm Optimizer – the arPSO. Technical report, EVAlife, Denmark, 2002.
[43] Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proceedings of the Congress Evoluationary Computer, 1998, pp. 69–73.
[44] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization

11 (1997) 341–359.
[45] P.N. Suganthan, Particle swarm optimiser with neighbourhood operator, in: Proceedings of IEEE Congress on Evolutionary Computation, 1999, pp.

1958–1962.
[46] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger, S. Tiwari, Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session

on Real-Parameter Optimization, Technical report, Nanyang Technological University, 2005.
[47] J. Sun, B.W. Xu, W. Fang, A diversity-guided quantum-behaved particle swarm optimization algorithm, in: International Conference on Simulated

Evolution and Learning, 2006, pp. 497–504.
[48] C. Sun, J. Zeng, J. Pan, An improved vector particle swarm optimization for constrained optimization problems, Information Sciences 181 (6) (2011)

1153–1163.
[49] K. Tang, X. Li, P.N. Suganthan, Z. Yang, T. Weise, Benchmark Functions for the CEC’2010 Special Session and Competition on Large-Scale Global

Optimization, Technical report, Nature Inspired Computation and Applications Laboratory, USTC, China, 2010.
[50] K. Tang, X. Yao, P.N. Suganthan, C. Macnish, Y. Chen, C. Chen, Z. Yang, Benchmark Functions for the CEC’2008 Special Session and Competition on High-

Dimensional Real-Parameter Optimization, Technical report, Nature Inspired Computation and Applications Laboratory, USTC, China, 2007.
[51] R.K. Ursem, Diversity-guided evolutionary algorithms, in: Proceedings of the Parallel Problem from Nature, vol. VII, 2002, pp. 462–471.
[52] H. Wang, Z. Wu, S. Rahnamayan, C. Li, S. Zeng, D. Jiang, Particle swarm optimization with simple and efficient neighbourhood search strategies,

International Journal of Innovative Computing and Applications 3 (2) (2011) 97–104.
[53] H. Wang, Z.J. Wu, S. Rahnamayan, Y. Liu, M. Ventresca, Enhancing particle swarm optimization using generalized opposition-based learning,

Information Sciences 181 (20) (2011) 4699–4714.
[54] H. Wang, Z. Wu, S. Zeng, D. Jiang, Y. Liu, J. Wang, X. Yang, A simple and fast particle swarm optimization, Journal of Multiple-Valued Logic and Soft

Computing 16 (6) (2010) 611–629.
[55] W. Wang, H. Wang, S. Rahnamayan, Improving comprehensive learning particle Swarm optimizer using generalized opposition-based learning,

International Journal of Modelling, Identification and Control 14 (4) (2011) 310–316.
[56] Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, Q. Tian, Self-adaptive learning based particle swarm optimization, Information Sciences 180 (20) (2011)

4515–4538.
[57] Z. Yang, K. Tang, X. Yao, Large scale evolutionary using cooperative coevolution, Information Sciences 178 (2008) 2985–2999.

H. Wang et al. / Information Sciences 223 (2013) 119–135 135
[58] F. Yano, T. Shohdohji, Y. Toyoda, An improvement of particle swarm optimization with a neighborhood search algorithm, Industrial Engineering and
Management Systems 6 (1) (2007) 64–71.

[59] Z. Zhan, J. Zhang, Y. Li, H. Chung, Adaptive particle swarm optimization, IEEE Transactions on Systems, Man and Cybernetics – Part B: Cybernetics 39 (6)
(2009) 1362–1381.

[60] W.J. Zhang, X.F. Xie, DEPSO: hybrid particle swarm with differential evolution operator, Proceedings of IEEE International Conference on Systems, Man
and Cybernetics (2003) 3816–3821.

	Diversity enhanced particle swarm optimization with neighborhood search
	1 Introduction
	2 Related works
	3 Diversity enhanced PSO with neighborhood search (DNSPSO)
	3.1 Diversity enhancing mechanism
	3.2 Neighborhood search strategy
	3.2.1 Local neighborhood search (LNS) strategy
	3.2.2 Global neighborhood search (GNS) strategy

	3.3 The proposed approach

	4 Experimental verifications
	4.1 Test problems
	4.2 Parameter sensitivity analysis
	4.3 Effects of different strategies
	4.4 Comparison of DNSPSO with other state-of-the-art PSO variants
	4.4.1 Comparison of DNSPSO with CPSO-H, CLPSO and APSO
	4.4.2 Comparison of DNSPSO with PSO based on real-valued mutation

	4.5 Comparison results on CEC 2005 benchmarks
	4.6 Comparison results on CEC 2010 large-scale benchmarks

	5 Conclusions
	Acknowledgments
	References

