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Gaussian Bare-Bones Differential Evolution

Hui Wang, Shahryar Rahnamayan, Hui Sun, and Mahamed G. H. Omran

Abstract—Differential evolution (DE) is a well-known algorithm
for global optimization over continuous search spaces. However,
choosing the optimal control parameters is a challenging task
because they are problem oriented. In order to minimize the
effects of the control parameters, a Gaussian bare-bones DE
(GBDE) and its modified version (MGBDE) are proposed which
are almost parameter free. To verify the performance of our
approaches, 30 benchmark functions and two real-world problems
are utilized. Conducted experiments indicate that the MGBDE
performs significantly better than, or at least comparable to,
several state-of-the-art DE variants and some existing bare-bones
algorithms.

Index Terms—Bare-bones particle swarm, differential evolution
(DE), evolutionary optimization, global optimization, numerical
optimization.

I. INTRODUCTION

IFFERENTIAL EVOLUTION (DE) [1], [2] is a
population-based stochastic optimization algorithm,
which has been applied successfully to solve many real-world
and benchmark problems. Its performance, similar to that of
other evolutionary algorithms (EAs), is greatly influenced by
the settings of its control parameters, such as the mutation scale
factor and crossover rate [3], [4]. Although the suggestions for
parameter settings have been made in the literature [2], these
values are not universally applicable to achieve the highest
performance. The main reason is that those parameters are
problem dependent and the fixed parameter settings are not a
general solution.
In order to minimize the effects of DE control parameters,
a number of improved DE variants haven been proposed in
the past decade [4]-[10]. All of these algorithms are based on
adaptive or self-adaptive mechanisms, in which the control pa-
rameters are automatically adjusted according to some updating
rules. Although these strategies are helpful to improve the per-
formance of DE and avoid choosing parameters based on trial
and error process, many of them introduce additional complex
adaptive operations which usually are not easy to implement.
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In this paper, a new bare-bones DE (BBDE) variant
[Gaussian bare-bones DE (GBDE)] and its improved version
[modified GBDE (MGBDE)] are proposed to minimize the
effects of the control parameters. The proposed approaches are
inspired by the concept of bare-bones particle swarm optimiza-
tion (PSO) (BBPSO) [11]. Compared to the existing BBDE
[12], our approaches are simpler yet more efficient. In order to
verify the performance of the proposed approaches, a compre-
hensive set of experiments is conducted on 30 well-known nu-
merical benchmark functions and two real-world optimization
problems.

The rest of this paper is organized as follows. In Section II,
the classical DE algorithm is briefly introduced. Section III
presents an overview of DE related works. The proposed ap-
proaches are described in Section IV. Section V presents the
experimental results and discussions. Finally, conclusion and
future work are given in Section VI.

II. CLASSICAL DE

Like other EAs, DE is a population-based stochastic search
algorithm. It starts with a population of N, vectors representing
the candidate solutions, where N, indicates the population
size. Let us assume that X; ¢ = [;1.¢,%i2.Gs- -, %i,D.G)
is the ith candidate solution vector in generation GG, where
(1=1,2,...,Np), D is the problem’s dimension, and G is
the generation index. For the classical DE, there are three
following operations: mutation, crossover, and selection, which
are described as follows.

A. Mutation

For each vector X; ¢ at generation G, this operation creates
mutant vectors V; ¢ based on the current parent population. The
following are five well-known variant mutation strategies.

1) DE/rand/1

Vie=Xi,c+F (Xi,e—Xisq)- (D
2) DE/best/1
Vie = Xvestt + F - (Xiy .o — Xiyq) - (2)

3) DE/current-to-best/1

Vi =Xic+F - (Xpest,o — Xig) + F- (Xiy o — Xiy o) -
©)
4) DE/rand/2

Vie=Xi, o+ I (Xi,o— Xizq) +F - (Xiy6 — Xis.q) -
“4)
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5) DE/best/2
Via = Xvest,a + F - (Xi,,¢ — Xiyq)

+F- (Xiyo— Xipa)- O
The indices 1, i2, 73, 14, and i5 are mutually different random
indices chosen from the set {1, 2,..., N, }, and all are different
from the base index 7. The scale factor F' is a real number that
controls the difference vectors. Xi,cs, is the best vector in
terms of fitness value at the current generation G.

B. Crossover

DE also employs a crossover operator to build trial vectors
by recombining the current vector and the mutant one. The
trial vector U; ¢ = (ui1.6,%i2.Gs---,UiD,c) is defined as
follows:

Ui = Vi,5,G>
o ijG

ifrand;(0,1) < CRV j = jrand
otherwise

(6)

where CR € (0,1) is the predefined crossover probability,
rand; (0, 1) is a uniform random number within [0, 1] for the
jth dimension, and jyana € {1,2,..., D} is a random index.

C. Selection

After the crossover, a greedy selection mechanism is used to
select the better one between the parent vector X; ¢ and the trial
vector U; ¢ according to their fitness values f(-). Without loss
of generality, this paper only considers minimization problems.
If, and only if, the trial vector U; ¢ is better than the parent
vector X; ¢, then X g1 is set to U; g; otherwise, we keep
X g+1 the same with X; 5.

Ui,G7

Y. _ { if f(Uie) < f(Xiq)
LG+ Xi.G7

otherwise.

)

III. A BRIEF REVIEW OF DE

Although DE has shown better performance in solving many
benchmark and real-world problems, its performance highly
depends on the selected mutation strategies and corresponding
control parameters. To overcome these drawbacks, many im-
proved DE variants have been proposed in the past decades. In
this section, a brief overview of these enhanced approaches is
presented.

Liu and Lampinen [5] proposed a fuzzy adaptive DE
(FADE), which uses a fuzzy logic controller to set the prob-
ability of mutation and crossover. The presented experimental
results show that FADE surpasses classical DE. Brest et al. [6]
presented a self-adaptive DE (jJDE), in which the control param-
eters are randomized. Experimental studies on jDE show that it
achieves better results than classical DE, classical evolutionary
programming [13], and fast evolutionary programming [13]
on most test functions. For further improvement of jDE per-
formance on high-dimensional optimization problems, several
enhanced versions of jDE with population size reduction are
proposed in [14] and [15].

Qin and Suganthan [7], [8] presented a self-adaptive DE
(SaDE) for numerical optimization, which focuses on the adap-
tation of the C'R parameter and mutation strategies of DE. The
proposed SaDE does not use any particular learning strategy or
any specific settings for the control parameters. SaDE uses its
previous learning experiences to select the mutation strategies
and parameter values adaptively. Yang et al. [16] introduced a
neighborhood search strategy to DE (NSDE), which generates
F' using Gaussian and Cauchy distributed random numbers
instead of predefining a constant F'. Based on SaDE and NSDE,
Yang et al. [17] proposed another version of DE self-adaptive
differential evolution with neighborhood search (SaNSDE),
which is inspired from NSDE to generate self-adaptive F'
and uses a weighted adaptation scheme for C'R. The reported
empirical results verified that SaNSDE outperforms SaDE and
NSDE in terms of solution accuracy.

Noman and Iba [18] introduced an adaptive local search (i.e.,
hill-climbing strategy) to DE. Rahnamayan et al. [19] presented
an opposition-based DE (ODE) to accelerate the convergence
speed of DE. The proposed approach employs an opposition-
based-computation concept to calculate the opposite candidate
solutions of the current population. By simultaneously evalu-
ating the current candidate solutions and their opposite, ODE
can provide a higher chance of finding candidate solutions
more closely to the global optimum. Experimental studies on
ODE show that it is faster and more robust than classical DE
and FADE. Inspired from ODE, Wang et al. [20] proposed
an enhanced ODE generalized opposition-based DE (GODE)
by using a generalized opposition-based learning [21]-[23].
Experimental results show that GODE performs better in terms
of convergence rate and robustness. A parallel GODE version
based on graphics processing unit can be found in [24].

Zhang and Sanderson [9] proposed a self-adaptive DE adap-
tive DE with optional external archive (JADE) which employs
a new mutation strategy called “DE/current-to-pbest.” The pre-
sented results show that JADE outperforms PSO, DE, jDE,
and SaDE on several benchmark functions. Gong et al. [10]
proposed a simple strategy adaptation mechanism (SaM) which
can be used for different mutation strategies. The simulation
results confirm that SaM is helpful to improve the performance
of DE variants. Das et al. [25] proposed an enhanced DE
algorithm DE with global and local neighborhoods (DEGL)
by using an improved “DE/target-to-best/1” strategy which em-
ploys two mutation strategies: local neighborhood and global
neighborhood. It aims to achieve better balance between the
exploration and exploitation abilities of DE. Experimental re-
sults show that DEGL is better than several state-of-the-art
DE variants and evolutionary techniques. Inspired from the
idea of DEGL, Wang et al. [26], [27] proposed a new DE
variant with neighborhood search which focuses on searching
the neighbors of vectors during the evolution. Ghosh et al. [28]
described a simple yet effective adaptation technique for tun-
ing both /' and C'R during the evolution. The adaptation
strategy is based on the objective function value of individ-
uals in the DE population. Simulation results show that the
proposed approach obtains promising performance over 14
well-known benchmark functions and one real-life problem.
Islam et al. [29] proposed a new adaptive DE variant which
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employs an improved DE/current-to-best/l mutation scheme
and a fitness-induced parent selection scheme for the binomial
Crossover.

Chakraborty et al. [30] proposed an improved harmony
search (HS) algorithm hybridized with DE. The reported sim-
ulation results show that the proposed approach differential
harmony search achieves better solutions than the classical
HS, global best HS, and DE. Mallipeddi and Suganthan [31]
introduced an ensemble of mutation strategies and control
parameters with DE (EPSDE), in which a pool of distinct
mutation strategies along with a pool of values of each param-
eter coexists throughout the evolution process and competes
to produce offspring. The experimental results showed that
EPSDE outperforms SaDE, jDE, and JADE on a majority of
test problems. Weber ef al. [32] proposed a distributed DE
which employs a scale factor inheritance mechanism for tuning
F. In the proposed approach, the population is distributed
over several allocated subpopulations based on a ring topology.
Each subpopulation is characterized by its own scale factor
value. Wang et al. [33] proposed an adaptive DE with variable
population size to solve high-dimensional global optimization
problems, in which the population size is dynamically adjusted
according to the search status of the current population. Lin
et al. [34] introduced a new mutation strategy, namely, the best
of random, in which the best individual among several ran-
domly chosen individuals is selected as the differential mutation
base while the other worse individuals are donors for vector
differences. Hence, higher diversity and fast evolution speed
can be obtained. Epitropakis et al. [35] introduced a framework
of proximity-based mutation operators which incorporates in-
formation of neighboring individuals to efficiently guide the
evolution of the population toward the global optimum. Wang
et al. [36] proposed a composite DE (CoDE) by using three
trial vector generation strategies and three control parameter
settings. Experimental results on the Congress on Evolutionary
Computation (CEC) 2005 benchmark show that CoDE is very
competitive.

Although DE has been successfully applied to many applica-
tions, there are few papers to study its convergence character-
istic. In [37], Ghosh et al. take a first significant step toward
the convergence analysis of a canonical DE (DE/rand/1/bin)
algorithm. It has pointed out that the analysis is applicable to
a class of continuous and real-valued objective functions that
possesses a unique global optimum (but may have multiple
local optima). Theoretical results have been substantiated with
relevant computer simulations [37].

In this section, we only presented a brief overview of some
recently proposed DE variants; a comprehensive survey can be
found in [38] and [39].

IV. GBDE
A. BBPSO and BBDE

PSO is a swarm intelligence-based algorithm, which is in-
spired by the behavior of birds flocking and fish schooling [40].
In PSO, each particle is attracted by its personal best position
(pbest) and the global best position (gbest) found so far. Some
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theoretical studies [41], [42] proved that each particle converges
to the weighted average of pbest and gbest

c1 - pbest; ¢ + ca - gbest
c1 + C2

®)

lim X;qg=
Gilfoo 5,G
where c; and ¢y are two leaning factors in PSO.

Based on PSO’s convergence behavior, Kennedy [11] de-
veloped a BBPSO. This new version of PSO eliminates the
velocity term, and the position is updated as follows:

best + pbest; o
Xigy1 =N <g 2p :

where X; 41 is the position of the ith particle in the population
and N represents a Gaussian distribution with mean (gbest +
pbest; ¢)/2 and standard deviation |gbest — pbest; /.

The particle positions are sampled by the aforementioned
Gaussian distribution. The BBPSO facilitates initial explo-
ration, due to large deviation. As the number of generation
increases, the deviation approaches to zero, by focusing on the
exploitation of the pbest and gbest [43].

Kennedy [11] proposed a modified BBPSO by using an
alternative mechanism as follows:

, lgbest — pbesti> 9)

Xi 5,641
N(gbest+pbesti,j,c
2

)

|gbest — pbesti,j’g|), (10)

pbest; j a,

if rand;(0,1) > 0.5
otherwise

where rand;(0,1) is a random value within [0, 1] for the
jth dimension. For the alternative mechanism, there is a 50%
chance that the search process is focusing on the previous best
positions.

Inspired by the modified BBPSO and DE, Omran et al. [12]
proposed a new and efficient DE variant, called BBDE, in
which the vector is updated as follows:
Zij,G
_ {pm‘,c: +ra (Tiy j.6 — Tiy4.6) s

pbesti, a,

if rand;(0,1) > CR
otherwise

(11)

where i1, 75, and 73 are three indices chosen from the set
{1,2,...,Np} with iy # i3 # 4, 12 is a random value within
[0, 1] for the jth dimension, rand;(0,1) is a random value
within [0, 1] for the jth dimension, and p; ; ¢ is defined by

pi,j.,G = rl,j . pbestiﬁjG =+ (]. — 7"1]‘) . gbestj (12)

where r; ; is arandom value within [0, 1] for the jth dimension.

B. Proposed Approach (GBDE)

In BBPSO, the new position is generated by a Gaussian
distribution for sampling the search space based on the current
vector and the best vector at the current generation. As a result,
the new position vector will be centered around the weighted
average of pbest; and gbest. At the initial evolutionary stages,
the search process focuses on exploration due to the large devi-
ation (initially, pbest; will be far from gbest). With increasing
number of generations, the deviation becomes smaller, and the
search process will focus on exploitation.
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From the search behavior of BBPSO, the Gaussian sampling
is a fine tuning procedure which starts during exploration and is
continued to exploitation. This can be beneficial for the search
of many evolutionary optimization algorithms. Based on this
idea, a parameter-free DE algorithm, called GBDE, is proposed
in this paper. In the GBDE, a Gaussian mutation strategy is
defined by

Vie = N(p.o) (13)
where N (1, o) is a Gaussian random function with mean . and
standard deviation o, where 1 = (Xpest,¢ + Xi,¢)/2 and 0 =
| Xbest,a — Xial

Similar to the classical DE, GBDE also employs the same
crossover scheme as follows (without loss of generality, this
paper only considers the binomial crossover scheme):

Vi 5,G>
Ui j,G =

Ti,5,G5

if randj (0, 1) <CR \/j = jrand

otherwise 14
where C'R is the probability of crossover.

Like other DE variants, the parameter C'R also greatly affects
the performance of GBDE. When the crossover probability C R
is a large value, the trial vector U; ¢ will have a large chance
of inheriting the components of the mutant vector V; ¢ which
is generated around the X; ¢ and Xjee . With increasing
number of generations, X; ¢ gradually approaches to Xy,
and U; ¢ approaches to Xyest, . It demonstrates that a large
CR will accelerate the trial vector moving to the best vector.
However, this may result in a premature convergence. When
CR is a small value, the trial vector U; ¢ will inherit many
components from its parent vector X; ¢. It means that U; ¢
is very similar to X ¢. This will slow down the convergence
speed. Therefore, the value of C'R should not be fixed during
the evolution.

In this paper, a simple self-adaptive strategy is proposed to
dynamically update C'R. In some well-known self-adaptive DE
algorithms, such as SaDE [8] and JADE [9], the initial value
of CR is independently generated by a normal distribution
of mean 0.5 and standard deviation 0.1. After a predefined
number of generations, the C'R is updated according to the
search experiences of successful crossover probabilities. By
following this idea, a new self-adaptive C'R strategy is proposed
as follows:

CRi,G7
N(0.5,0.1),

if f(Uig) < f(Xic)

15
otherwise (13)

CRiG+1 = {

where N(0.5,0.1) is a random value generated by a normal
distribution of mean 0.5 and standard deviation 0.1.

When f(U; ¢) < f(Xi.¢), it means that the current C'R has
a higher chance to improve the quality of candidate solutions
during the next generation. Keeping the current C'R may obtain
better solutions. When the trial vector is worse than the current
vector, it indicates that the current C'R has a lower chance
to generate better candidate solutions. Therefore, changing the
current C'R may be more suitable for the evolution process. By
the suggestions of Qin et al. [8] and Zhang and Sanderson [9],

a normal distribution of mean 0.5 and standard deviation 0.1 is
used to generate a new C'R.

Algorithm 1: The Pseudocode of GBDE

1 Randomly initialize the population at generation G = 0;
2 whilethe stopping criterion is not satisfieddo

3 fori =1to N,do

4 Generate a mutant vector V; ¢ according to (13);

5 Generate a trial vector U; ¢ according to (14);
6 Evaluate the trial vector U; ¢;
7 iff(UZ,G) < f(Xi7(;)thel’l
8 Xig+1=Uigs
9 iff(Ui)G) < f(XbeStyg)thel‘l
10 Xbest,G = Ui,G';
11 end
12 end
13 else
14 Xigr1 = Xias
15 end
16 Update C'R according to (15);
17 end
18 G=G+1;
19 end

Compared to the classical DE, GBDE only modifies the mu-
tation strategy and the C'R parameter. Therefore, both GBDE
and the classical DE have the same time complexity O(Gax -
N, - D), where G yax is the maximum number of generations.
The main steps of GBDE are described in Algorithm 1.

Fig. 1 illustrates the search behaviors of GBDE for a 5-D
Ackley’s function. At the beginning of evolution, all vectors in
the population almost cover the entire search space because of
the large deviation. At this stage, the algorithm mainly focuses
on exploration. As the number of generations increases, the
deviation gradually decreases. Then, the search region covered
by the population becomes smaller and smaller, and the vectors
approach toward the best vector. The search behavior of GBDE
gradually transforms from exploration to exploitation.

In GBDE, the mutation strategy uses a Gaussian sampling
method. Because of its randomness characteristic, it may slow
down the convergence speed of GBDE. It is known that the
DE/best/1 has fast convergence rate in solving unimodal and
simple multimodal problems due to the attraction toward the
best vector. To balance the global search ability and conver-
gence rate, a modified GBDE (called MGBDE) is proposed by
the hybridization of GBDE and DE/best/1 as follows.

In the MGBDE, each vector is randomly assigned to a mu-
tation strategy (either the Gaussian mutation or the DE/best/1
mutation) during the population initialization. The assigned
mutation strategy for each vector does not change during the
search process. Consider that M; represents the mutation strat-
egy of X;. It can be expressed as follows:

M — DE/best/1/ (Eq. 2) if rand;(0,1) < 0.5
* 7| Gaussian mutation (Eq. 13) otherwise.
(16)
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Fig. 1. Search behaviors of GBDE for a 5-D Ackley’s function, where “[J” represents the vectors in the current population at generation GG and “A” indicates

the current best vector. (a) G = 0. (b) G = 30. (¢) G = 60. (d) G = 90.

For each vector X;, MGBDE first checks the M; and selects
a corresponding mutation strategy to generate mutant vectors.
The rest of the steps of the MGBDE are the same as that with
GBDE.

In the MGBDE, about 50% of the vectors in the population
follow the behavior of DE/best/1, while the remaining 50%
follow the GBDE. This will be helpful to balance the advan-
tages of fast convergence rate (the attraction of DE/best/1) and
exploration (the Gaussian sampling of GBDE) in MGBDE.

V. EXPERIMENTAL STUDIES ON GBDE
A. Benchmark Functions

In order to verify the performance of our proposed
approaches, namely, GBDE and MGBDE, a test bed of well-
known 20 benchmark functions are used in the following exper-
iments. These functions were early considered in [6], [13], and
[25]. Among these problems, f; — fi3 are high-dimensional
functions. fi; — f5 are unimodal functions. fg is a step func-
tion which has one minimum and is discontinuous. f7 is a
noisy quartic function. fg — f13 are multimodal functions with
many local minima. f14 — fo; are low-dimensional multimodal
functions with a few local minima. All the functions used in
this paper have to be minimized. The descriptions of these
benchmark functions are summarized in Table I.

B. Comparison of GBDE and MGBDE With Other
DE Schemes

In this section, the proposed GBDE and MGBDE are com-
pared with two other DE schemes including DE/rand/1 and DE/
best/1. The current experiment includes three series of compar-
isons in terms of the following: 1) quality of the final solutions;
2) convergence speed and success rate (SR); and 3) scalability

test. For common parameters, all the four contestant algorithms
use the same settings, such as the same population size and
stopping criterion. The specific parameter settings are listed as
follows.

1) Population size: ps = 100 [6], [19].

2) FF=0.5,and CR = 0.9 [5], [6], [19].

3) Crossover scheme: Binomial (for all algorithms) [6], [19].

4) Stop criterion: There are two cases: 1) For the first
and third experiments, each algorithm stops when the
number of fitness evaluations (FEs) reaches the maximum
FEs (MAX_FEs); for the first comparison, MAX_FEs =
2.00E' 4+ 05, and for the experiment, MAX_FEs =
5000 x D, where D is the dimension of the problem; and
2) for the second experiment, each algorithm stops when
the FEs reach the MAX_FEs or the best fitness value
found so far is below the predefined threshold objective
function value. In this case, MAX_FEs = 1.00F + 06,
and the threshold value is given in Table III.

5) Number of runs: Each algorithm is run 50 times per
function.

1) Comparison of Final Solution’s Quality: The results
achieved by DE/rand/1, DE/best/1/, GBDE, and MGBDE for
f1 — foo are summarized in Table II, where “Mean” indicates
the mean best fitness value and “Std Dev” represents the
corresponding standard deviation. The best results are shown
in boldface. The comparison results among MGBDE and other
algorithms are summarized as “w/t/l” in the last row of the
table, which means that MGBDE wins in w functions, ties in ¢
functions, and loses in [ functions [10]. Fig. 2 shows the perfor-
mance graphs of DE/rand/1, DE/best/1, GBDE, and MGBDE;
due to the tight space limitation, some sample graphs are
illustrated.

Based on the results, our approach achieves better results
than other algorithms on the majority of test functions. MGBDE


Administrator
Highlight


WANG et al.: GAUSSIAN BARE-BONES DIFFERENTIAL EVOLUTION

TABLE 1

TWENTY BENCHMARK FUNCTIONS USED IN OUR EXPERIMENTAL STUDY, WHERE D IS PROBLEM DIMENSION

639

Name Function D | Search range |Global optimum
Sphere fi =322 30| [-100,100] 0
Schwefel 2.22 L@ =3P il + T2, % 30 [-10,10] 0
Schwefel 1.2 JIEGEDWMOWEEDE 30| [-100, 100] 0
Schwefel 2.21 fi(x) = max{lx|, 1 <i< D) 30| [~100, 100] 0
Rosenbrock F5(0) = T 10001 — x7)? + (1 - x2)*] 30 [-30,30] 0
Step fo() =32 |x +0.5) 30| [~100, 100] 0
Quartic with noise f0) =32 i x! + random[0, 1) 30| [-1.28,1.28] 0
Schwefel 2.26 fa(x) =22 —x; - sin (V) 30| [-500,500] -12569.5
Rastrigin Ho) =32, [x} - 10cos 2x; + 10] 30| [-5.12,5.12] 0
Ackley fio(0) = —20exp(-0.2 \/ & T2, x2) — exp(§ T2, cos(2mx;)) + 20 + e 30 [-32,32] 0
Griewank fi1(0) = g T2y @)~ T cos(5) + 1 30| [-600,600] 0
Fia(0) = F{Z2 0i = DA+ sin (ayis)] + 0p — 1) + (10sin Gryn)}
+ 2P u(xi,10,100,4), y; = 1+ 5L
Penalized 1 wxi,a.k.m), xi>a 30 [-50,50] 0
u(xj,a,k,m) =4 0, —a<xi<a
k(—x; —a)™, x;<-a
Penalived 2 fiz (%) - 0.1 {sin® Brxy) + £27" (i — 1?1+ sin? G )| + (xp — D? [1+ sin® Qmap) || 20 (50.50] 0
+ 22 u(x,5,100,4)
—1
Shekel’s Foxholes | fia (x) = | 55 + 272, m] 2 | [-65.536,65.536] | 0.998004
Kowalik fis) =21 ai - %] 4 [-5,5] 0.0003075
Six-hump Camel-back | fio(x) = 422 = 2.1x} + $x0 + xpx, — 423 + 43 2 [-5.5] -1.0316285
Branin fi7(0) = (2 = 2527 + 231 = 6)7 + 10(1 = g cos xp + 10 2 [-5,10] 0.398
GoldsteinPrice Sis(r) = [1+ (x1 + x2 + 1)22(19 - ldx; + 3x%27 14xy + 6x1.2 + 3x3] i 5 [£2.2] 3
~[30+ (2x; — 3x2)7(18 = 32x; + 12x7 + 48x — 36x x2 + 27x3)]
Shekel5 fo() == 2L [ - aptei —ap’ + c,-]_] 6 [-10, 10] ~10.1532
Shekel7 fo 0 ==32L [ —anxi - a)T + c,]’l 6 [-10, 10] ~10.4029
Shekel10 fr) = =52 [ - —a) +e] 6 [-10,10] ~10.5364
TABLE I
RESULTS OF MEAN BEST FITNESS VALUE AND STANDARD DEVIATION FOR ALL TEST FUNCTIONS
Functions | D DE/rand/1 DE/best/1 GBDE MGBDE
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
fi 30 | 834E-24  6.45E-24 | 0.00E+00 0.00E+00 | 157E-36 233E-36 | 8.79E-68  521E-69
) 30 | 1.05E-11  4.00E-11 | 7.23E-47 1.25E-46 | 3.67E-24  1.50E-24 | 850E-41  3.38E-41
£ 30 | 434E-03  5.65E-03 | 1.68E-50  2.64E-50 | 1.20E+02  6.63E+01 | 6.10E-11  296E-11
fa 30 | 447E-02  7.60B-02 | 223E-06 1.77E-06 | 2.40E-02 2.94E-02 | 131E-05 3.46E-06
f 30 | 820B+00  1.73E+00 | 1.33E+00  2.30E+00 | 2.25E+01  2.68E+00 | 1.69E+00  2.24E+00
fo 30 | 0.00E+00 0.00E+00 | 1.51E+02  1.67E+02 | 0.00E+00  0.00E+00 | 0.00E+00  0.00E+00
f 30 | 842E-03  7.33B-04 | 135E-02  3.27E-03 | 9.43E-03  536E-03 | 2.14E-03  1.08E-03
f 30 | -74267  752E+02 | 27046  6.95E+02 | -12569.5 1.34E-12 | -12569.5  1.09E-12
fo 30 | 1.8IE+02  244E+01 | 842E+01  9.97E+00 | 6.96E+00  5.41E+00 | 3.98E+00  2.98E+00
fio 30 | 3.02E-12  1.70E-12 | 4.07E+00 2.28E+00 | 7.69E-15 0.00E+00 | 7.69E-15  0.00E+00
ful 30 | 0.00E+00 0.00E+00 | 2.54E-02  2.69E-02 | 0.00E+00 0.00E+00 | 0.00E+00  0.00E+00
fi2 30 | 7.82E-25  5.62E-25 | 248E+00  2.50E-01 | L.57E-32 0.00E+00 | 1.57E-32  0.00E+00
fi3 30 | 275623  4.19E-23 | 457E-01  1.57E-01 | 1.35E-32  0.00E+00 | 1.35E-32  0.00E+00
fia 2 | 0998004 0.00E+00 | 0.998004  0.00E+00 | 0.998004  0.00E+00 | 0.998004  0.00E+00
fis 2 | -1.03163  0.00E+00 | -1.03163  0.00E+00 | -1.03163  0.00E+00 | -1.03163  0.00E+00
fis 2 | 0397887  0.00E+00 | 0.460611  1.09E-01 | 0.397887  0.00E+00 | 0.397887  0.00E+00
fi7 2 | 3.00E+00 0.00E+00 | 3.00E+00 0.00E+00 | 3.00E+00 0.00E+00 | 3.00E+00  0.00E+00
fis 6 | -10.1532  0.00E+00 | —5.17297  431E+00 | -10.1532  0.00E+00 | -10.1532  0.00E+00
fio 6 | -10.4029  0.00E+00 | -7.8526  4.42E+00 | -10.4029  0.00E+00 | -10.4029  0.00E+00
Fo 6 | -10.5364 1.78E-15 | —7.98132  336E+00 | -10.5364 0.00E+00 | —-10.5364  0.00E+00
wit/l 11/9/0 12/3/5 7/13/0 —
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Fig. 2. Evolutionary processes of DE/rand/1, DE/best/1, GBDE, and MGBDE
(f2). (c) Schwefel 2.26 (fg). (d) Rastrigin (fo).

outperforms DE/rand/1 on 11 functions. For the rest of the
nine functions, both DE and MGBDE achieve the same results.
Although DE/best/1 performs better than MGBDE on five
functions, they are simple unimodal problems. For complex
high-dimensional multimodal functions (fs — f13), DE/best/1
could hardly achieve promising solutions. It demonstrates that
DE/best/1 is only suitable for solving unimodal and simple
multimodal problems. GBDE achieves promising solutions on
all test functions except for fs, f5, and fg. Although f5 is a uni-
modal function, the rotated search space hinders the sampling
of GBDE. It is pointed out in [44] that the Rosenbrock problem
(f5) is multimodal when D > 3. Moreover, its global optimum
is inside a long narrow parabolic shaped flat valley. It is easy to
find the valley but difficult to converge to the global optimum.

To accelerate the convergence rate of GBDE, the MGBDE
is proposed by the hybridization of GBDE and DE/best/1. This
balances the global search ability of GBDE and the fast con-
vergence rate of DE/best/1 in MGBDE. The MGBDE achieves
better results than GBDE on seven functions. For the rest of
the 13 functions, both GBDE and MGBDE can find the global
optimum. It demonstrates that the MGBDE improvement is
caused by the proposed hybrid mutation strategies.

2) Comparison of the Convergence Speed and SR: In order
to compare the convergence rate of different algorithms, we
select a threshold value of the objective function for each test
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function. For functions with minima at zero, the threshold is
set to 1e-10. For other functions, the threshold values are listed
in the third column of Table III. The stopping criterion is that
each algorithm is terminated when the best fitness value so
far is below the predefined threshold value or the number of
FEs reaches to its maximum value (1.00E+06). For each test
function, each algorithm is run 50 times. The mean number of
FEs required to converge to the threshold and successful rate
are recorded.

Table III presents the results of the mean number of FEs
(Mean FEs) and successful rate (SR), where “NA” represents
that no runs of the corresponding algorithm converged below
the predefined threshold before meeting the maximum number
of FEs. The best results among the four algorithms are shown in
boldface. As seen, DE/best/1 shows faster convergence speed
on five unimodal and two simple multimodal functions, while it
hardly converges to the threshold for complex multimodal func-
tions. GBDE converges faster than DE/best/1 and DE/rand/1
on all multimodal functions with many local minima (fs —
f13). By the hybridization of GBDE and DE/best/l, MGBDE
significantly reduces the number of FEs. Particularly for f3
and f5, GBDE fails to solve them, while MGBDE successfully
converges to the threshold value. From the results of total
average FEs, MGBDE costs the lowest FEs to reach the thresh-
old. The acceleration rates between MGBDE and DE/rand/1,
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TABLE 1II
RESULTS OF MEAN NUMBER OF FES AND SUCCESSFUL RATE UNDER PREDEFINED ACCURACY LEVEL (THRESHOLD)
Functions D Threshold DE/rand/1 DE/best/1 GBDE MGBDE
Mean FEs SR Mean FEs SR Mean FEs SR Mean FEs SR
bil 30 1.00E-10 1.10E+05 100% | 1.28E+04 100% | 7.67E+04  100% | 3.90E+04  100%
H 30 1.00E-10 1.84E+05 100% | 3.53E+04 100% | 9.26E+04 100% | 5.22E+04 100%
5 30 1.00E-10 | 4.17E+05 100% | 5.82E+04 100% NA 0% 3.08E+05  100%
f1 30 1.00E-10 NA 0% 3.33E405 100% | 6.48E+05 100% | 3.46E+05 100%
fs 30 1.00E-10 | 4.12E+05 100% | 6.15E+04 100% NA 0% 3.92E+05  100%
fo 30 1.00E-10 2.97E+04  100% NA 0% 2.07E+04 100% | 1.23E+04 100%
fr 30 1.00E-02 9.87E+04 100% | 141E+05 100% 1.28E+05 100% | 4.61E+04 100%
53 30 | -1.25E+04 | 429E+05 100% NA 0% 4.37E+04 100% | 6.80E+04  100%
fo 30 1.00E-10 NA 0% NA 0% 2.92E+05 100% | 2.78E+05 100%
fio 30 1.00E-10 1.72E+05  100% NA 0% 1.17E+05  100% | 7.46E+04 100%
S 30 1.00E-10 1.IIE+05  100% | 2.15E+05 84% T42E+04  100% | 3.64E+04 100%
fiz 30 1.00E-10 1.OIE+05  100% NA 0% 6.83E+04 100% | 4.22E+04 100%
Si3 30 1.00E-10 1.07E+05  100% NA 0% 7.58E+04  100% | 3.92E+04 100%
fia 2 0.9981 390E+03 100% | 1.25E+03  100% 1.20E+03 100% | 1.10E+03 100%
fis 2 -1.0316 3.10E+03  100% | 1.02E+03  100% 1.ISE+03  100% | 1.60E+03  100%
Ji6 2 0.398 2.05E+03  100% NA 0% 8.90E+02 100% | 1.80E+03  100%
Sz 2 3 6.10E+03  100% | 2.40E+03 100% | 4.10E+03 100% | 7.60E+03 100%
fis 6 -10.15 5.90E+03 100% NA 0% 7.10E+03  100% | 7.80E+03 100%
fio 6 -10.4 4.80E+03  100% NA 0% 5.60E+03  100% | 4.20E+03 100%
fo 6 -10.53 5.20E+03  100% NA 0% 3.60E+03 100% | 3.90E+03 100%
Total Average 2.10E+05 90% 4.93E+05 54.2% | 1.83E+05 90% 8.81E+04 100%

DE/best/1, and GBDE are 2.38, 5.60, and 2.07, respectively.
Both DE/rand/1 and GBDE achieve the same SR (90%) because
they fail to solve two functions. DE/best/1 fails to solve nine
functions and obtains the lowest SR. MGBDE successfully
converges to the threshold value for all test functions and
achieves the highest SR.

3) Scalability Test: The performance of most EAs (includ-
ing DE) deteriorates quickly with the growth of the dimen-
sionality of the problem. The main reason is that, in general,
the complexity of the problem (search space) increases expo-
nentially with its dimension. Here, we show a scalable test of
GBDE and MGBDE for D = 50 and 100.

Table IV summarizes the comparison results of four DE
variants for D = 50 and 100, where “Mean Error” represents
mean function error values. From the results, it can be seen
that both GBDE and MGBDE are not always affected by the
growth of dimensionality. For f5, f7, and fs, GBDE achieves
similar performance when the dimension increases from 50 to
100. The performance of MGBDE deteriorates quickly with the
growth of dimension for five functions (f3 — f5, fs, and fo).
For the rest of the eight functions (f1, fo, fg, f7, and fio — f14),
the growth of dimension does not affect the performance of
MGBDE.

C. Comparison of GBDE and MGBDE With Some
State-of-the-Art DE Variants and Similar
Bare-Bones Algorithms

In this section, we compare GBDE and MGBDE with five
other recently proposed DE variants and two BBPSO algo-
rithms. The involved algorithms are listed as follows:

1) self-adapting DE (jDE) [6];

2) DE with neighborhood search (NSDE) [16];

3) ODE [19];

4) DEGL with self-adaptive weight factor (DEGL/SAW);
5) BBDE [12];

6) BBPSO [11];

7) modified BBPSO [11];

8) the proposed GBDE and MGBDE.

We have two series of experiments: 1) comparison of GBDE
and MGBDE with jDE, NSDE, ODE, and DEGL/SAW and 2)
comparison of GBDE and MGBDE with BBDE, BBPSO, and
modified BBPSO. The former aims to check whether GBDE
and MGBDE are better or worse than some state-of-the-art DE
variants, while the latter focuses on investigating how good
GBDE and MGBDE are within the similar context of bare-
bones algorithms.

1) Comparison of GBDE and MGBDE With jDE, NSDE,
ODE, and DEGL/SAW: This section presents the comparison
of GBDE and MGBDE with some state-of-the-art DE variants,
including jDE, NSDE, ODE, and DEGL/SAW. The parameter
settings for GBDE and MGBDE are kept the same as before.
For jDE, NSDE, and DEGL/SAW, the best set of parameters
was employed from the relevant literature [25]. For ODE, we
take /' = 0.5, CR = 0.9, N,, = 100, and the rate of opposition-
based jumping J,. = 0.3 according to the suggestions of
Rahnamayan et al. [19]. For all algorithms, we use the same
stopping criterion. Each algorithm runs on a function and
stops when the number of FEs reaches the maximum value
(MAX_FEs). In this comparison, MAX_FE:s is set to 5.00e+05
[25] (see the third column in Table V).

The results of mean fitness values achieved by the six DE
variants are presented in Table V, where “w/t/l” summarizes
the competition results among MGBDE and other algorithms.
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TABLE 1V
MEAN FUNCTION ERROR VALUES FOR D = 50 AND D = 100
D =50 D =100
Functions DE/rand/1 DE/best/1 GBDE MGBDE DE/rand/1 DE/best/1 GBDE MGBDE
Mean Error | Mean Error | Mean Error | Mean Error Mean Error | Mean Error | Mean Error | Mean Error
f 2.85E-17 4.88E-141 1.21E-18 7.34E-55 6.74E-20 2.36E-66 1.65E-08 6.76E-52
i 5.97E-09 1.31E-21 7.88E-13 2.54E-28 8.75E-11 7.93E+00 2.04E-07 1.46E-31
f 1.24E+02 3.79E-16 1.07E+04 3.11E+01 8.04E+03 1.74E+01 8.93E+04 2.15E+03
f1 1.52E+01 1.64E+01 5.68E+00 1.77E+00 431E+01 4.61E+01 3.96E+01 2.88E+01
s 3.06E+01 2.79E-21 2.53E+01 9.25E-02 1.31E+02 3.99E+00 1.78E+02 3.22E+01
o 0.00E+00 4.84E+02 0.00E+00 0.00E+00 0.00E+00 6.21E+03 0.00E+00 0.00E+00
Vil 4.07E-02 1.15E+01 2.97E-02 5.28E-03 7.19E-02 1.09E+02 1.33E-02 7.61E-03
R 1.35E+04 1.60E+04 0.00E+00 0.00E+00 2.78E+04 3.27E+04 0.00E+00 1.58E+03
fo 3.20E+02 1.68E+02 2.69E+01 1.87E+01 3.07E+02 4.39E+02 8.46E+01 7.95E+01
fio 5.74E-10 1.05E+01 3.18E-10 1.84E-14 8.75E-05 1.31E+01 1.57E-05 5.39E-14
m 0.00E+00 1.99E-14 0.00E+00 0.00E+00 1.13E-08 2.32E-13 7.38E-09 0.00E+00
fi2 1.97E-18 2.49E-01 7.35E-18 2.92E-21 1.09E-06 7.49E-01 8.62E-07 1.67E-21
113 7.70E-18 1.22E+00 1.50E-15 4.84E-31 9.91E-06 2.75E-01 8.69E-06 1.52E-31
TABLE V
RESULTS OF MEAN BEST FITNESS VALUES FOR THE S1X DE VARIANTS
Functions | D | MAX_FEs jDE NSDE ODE DEGL/SAW GBDE MGBDE
Mean Mean Mean Mean Mean Mean
N 25 5.00e+05 4.04E-35 | 9.55E-35 | 1.64E-38 8.78E-37 2.02E-83 | 6.31E-128
b 25 5.00E+05 8.34E-26 | 8.94E-30 | 3.51E-11 4.95E-36 8.10E-56 5.86E-72
f 25 5.00E+05 4.28E-14 | 3.06E-09 | 7.18E-04 1.21E-26 9.21E-01 9.50E-24
Ja 25 5.00E+05 3.02E-14 | 2.09E-11 1.28E-27 4.99E-15 2.40E-09 2.67E-24
fs 25 5.00E+05 5.65E-26 | 2.65E-25 | 1.09E-04 6.89E-25 1.96E+01 2.83E-11
o 25 5.00E+05 1.67E-36 | 4.04E-28 | 0.00E+00 9.56E-48 0.00E+00 | 0.00E+00
fa 25 5.00E+05 3.76E-02 | 4.35E-03 1.31E-03 1.05E-07 2.49E-03 4.56E-04
s 25 5.00E+05 -10475 -10475 -5982.1 -10475 -10475 -10475
fo 25 5.00E+05 6.73E-24 | 4.84E-21 | 6.53E+01 5.85E-25 2.23E-13 4.97E-17
So 25 5.00E+05 7.83E-15 | 5.97E-10 | 4.14E-15 5.98E-23 4.14E-15 4.14E-15
S 25 5.00E+05 1.83E-28 | 7.93E-26 | 0.00E+00 2.99E-36 0.00E+00 | 0.00E+00
f12 25 5.00E+05 9.37E-24 | 5.85E-21 | 1.88E-32 7.21E-27 1.88E-32 1.88E-32
w/t/l 9/1/2 9/1/2 8/3/1 6/1/5 7/5/0 —
TABLE VI TABLE VII
AVERAGE RANKINGS ACHIEVED BY FRIEDMAN TEST WILCOXON TEST BETWEEN MGBDE AND OTHER FIVE DE VARIANTS
Algorithms Average Rankings MGBDE vs. | p-values
MGBDE 4.67 DEGL/SAW | 4.24E-01
DEGL/SAW 4.33 GBDE 1.80E-02
GBDE 341 ODE 2.51E-02
ODE 3.33 jDE 1.31E-01
iDE 291 NSDE 9.12E-02
NSDE 2.33

The results of jDE, NSDE, and DEGL/SAW are taken from
[25, Tbl. VI]. Among the six algorithms, the best results are
shown in boldface. Here, we only list the results for functions
f1 — f12. The main reason is that all the six DE variants obtain
the same results for functions f14 — foq. For fi3, the literature
[25] uses a different function.

From the results, it can be seen that our approaches, GBDE
and MGBDE, achieve better results than jDE, NSDE, and
ODE on the majority of test functions. MGBDE outperforms
jDE and NSDE on nine functions, while jDE only preforms
better than MGBDE on f5. ODE achieves better results than

MGBDE on f,, while MGBDE outperforms ODE on eight
functions. Both MGBDE and DEGL/SAW almost have the
same performance on fgs. DEGL/SAW wins on five functions,
while MGBDE wins on six. MGBDE outperforms GBDE on
seven functions, which mainly focuses on unimodal functions.
For multimodal functions, both GBDE and MGBDE obtain
the same performance except for fy. These improvements are
caused by the introduction of the DE/best/1 strategy.

In order to compare the performance of multiple algorithms
on the test suite, we conducted the Friedman test [45]. Ta-
ble VI shows the average ranking of the six DE algorithms.
The highest ranking is shown in boldface. As seen, the
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TABLE VIII
RESULTS OF MEAN BEST FITNESS VALUES FOR THE BARE-BONES ALGORITHMS
Functions | D | MAX_ FEs BBPSO Modified BBPSO BBDE GBDE MGBDE
Mean Mean Mean Mean Mean
fi 30 5.00E+04 | 0.00E+00 0.00E+00 0.00E+00 | 1.03E-13 | 2.19E-24
b 30 5.00E+04 4.33E+00 0.00E+00 0.00E+00 | 6.99E-10 3.46E-16
A 30 5.00E+04 7.23E+03 6.88E+03 5.65E+01 2.08E+03 | 5.39E+01
/s 30 5.00E+04 1.56E+04 7.71E+01 4.79E+01 1.89E+01 | 1.76E+01
fe 30 5.00E+04 | 0.00E+00 0.00E+00 0.00E+00 | 0.00E+00 | 0.00E+00
s 30 5.00E+04 -9091.02 -10471.8 -11649 -12273.4 -12087.3
fo 30 5.00E+04 8.76E+01 1.35E+01 3.74E+01 | 2.42E+01 | 1.29E+01
fio 30 5.00E+04 2.26E+00 0.00E+00 0.00E+00 | 4.67E-07 2.13E-12
S 30 5.00E+04 1.12E-01 8.75E-04 6.57E-04 | 9.20E-08 | 2.26E-13
fis 30 5.00E+04 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163
w/t/l 7/2/1 5/2/3 5/2/3 7/2/1 ——
performance of the six algorithms can be sorted by aver- TABLE IX
age ranking into the following order: MGBDE, DEGL/SAW, AVERAGE RANKINGS ACHIEVED BY FRIEDMAN TEST
GBDE, ODE, jDE, and NSDE. The best average ranking was Algorithms Average Rankings
obtained by the MGBDE algorithm, which outperforms the MGBDE 3.80
other five algorithms. BBDE 3.40
Aside from the Friedman test, we also conduct Wilcoxon’s Modified BBPSO 3.10
test to recognize significant differences between the behavior GBDE 3.00
of two algorithms [46], [47]. Table VII shows the p-values BBPSO 1.70
of applying Wilcoxon’s test among MGBDE and other five
DE algorithms. The p-values below 0.05 (the significant level) TABLE X

are shown in boldface. From the results, it can be seen that
MGBDE is significantly better than ODE and GBDE. Although
MGBDE is not significantly better than the rest of the three
algorithms, it outperforms them according to the results of
average ranking.

2) Comparison of GBDE and MGBDE With Similar Bare-
Bones Algorithms: This section compares GBDE and MGBDE
with similar bare-bones algorithms, including BBPSO, mod-
ified BBPSO, BBDE, GBDE, and MGBDE. The parameter
settings are described as follows. For all algorithms, we take
N, = 50 and MAX_FEs = 5.00E + 04 which were employed
in the literature [12]. For BBDE, CR = 0.9. Each algorithm
runs on a function and stops when the number of FEs reaches
the MAX_FEs.

The results of mean fitness values achieved by the five
bare-bones algorithms are given in Table VIII, where “w/t/l”
summarizes the competition results among MGBDE and other
four algorithms. The results of BBPSO, modified BBPSO, and
BBDE are taken from [12, Tbls. I and II]. Among the five
algorithms, the best results are shown in boldface.

As seen, MGBDE outperforms BBPSO on seven func-
tions, while BBPSO only achieves better results on the sphere
function. The modified BBPSO improves the performance of
BBPSO on some functions, and it achieves better results than
MGBDE on three functions, while MGBDE outperforms it
on five functions. BBDE performs better than MGBDE on
three functions, while MGBDE wins on five. Compared to
the last experiments, we use smaller population size and less
MAX_FEs in this comparison, but MGBDE still outperforms
GBDE on most functions. From the whole comparison, the
advantages of BBPSO, modified BBPSO, and BBDE mainly
focus on unimodal functions, such as f; — f3, while GBDE

WILCOXON TEST BETWEEN MGBDE AND
OTHER BARE-BONES ALGORITHMS

MGBDE vs. p-values
BBDE 9.29E-02
Modified BBPSO | 9.29E-02
GBDE 1.23E-01
BBPSO 1.73E-02

and MGBDE show better performance on multimodal functions
except for fip and fi5.

Table IX shows the average ranking of the six DE algo-
rithms. The highest ranking is shown in boldface. As seen, the
performance of the five bare-bones algorithms can be sorted
by average ranking into the following order: MGBDE, BBDE,
modified BBPSO, GBDE, and BBPSO. The best average rank-
ing was obtained by the MGBDE algorithm, which outperforms
the other four algorithms.

Table X shows the p-values of applying Wilcoxon’s test
between MGBDE and the other four bare-bones algorithms.
The p-values below 0.05 (the significant level) are shown in
boldface. As seen, MGBDE is significantly better than BBPSO.
Although MGBDE is not significantly better than the rest of the
three algorithms, it outperforms them according to the results
of average ranking.

D. Test on CEC 2005 Shifted and Rotated Benchmarks

To further verify the performance of GBDE and MGBDE, a
set of ten CEC 2005 shifted and rotated benchmark functions
are used [48]. Simple descriptions of these functions are listed
in Table XI. More detailed definitions of them can be found
in [49].
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TABLE XI
TEN CEC 2005 BENCHMARK FUNCTIONS USED IN THE EXPERIMENTS,
WHERE D IS THE DIMENSION AND f(2°) IS THE GLOBAL OPTIMUM

F Name D | f(x*
Fq Shifted Sphere Function 30 | -450
F> Shifted Schwefel’s Problem 1.2 30 | 450
F3 | Shifted Rotated High Conditioned Elliptic Function | 30 | —450
Fy Shifted Schwefel’s Problem 1.2 with Noise 30 | -450
Fs Schwefel’s Problem 2.6 30 | =310
Fg Shifted Rosenbrock’s Function 30 390
F7 Shifted Rotated Griewank’s Function 30 | -180
Fyg Shifted Rotated Ackley’s Function 30 | 140
Fy Shifted Rastrigin’s Function 30 | =330
Fiy Shifted Rotated Rastrigin’s Function 30 | -330

In this section, we compare GBDE and MGBDE with three
other recently proposed DE variants. The involved algorithms
are listed as follows:

1) self-adapting DE (jDE) [6];

2) self-adaptive DE (SaDE) [8];

3) DE with ensemble of parameters and mutation strategies

(EPSDE) [50];

4) the proposed GBDE and MGBDE.

For jDE, SaDE, and EPSDE, we use the same parameter
settings for these three methods as in their original papers.
For EPSDE, there are two versions published in [31] and [50],
respectively. In this paper, the journal version of EPSDE [50] is
utilized. For GBDE and MGBDE, the population size N, is set
to 100. By the suggestions of Suganthan et al. [49], the number
of MAX_FE:s is set to 3.00E+05 for all algorithms. For each
test function, each algorithm is run 25 times. Throughout the
experiments, the mean and standard deviation of the function
error value (f(z) — f(x°)) are reported, where x is the best
solution found by the algorithm in a run and z° is the global
optimum of the test function.

Table XII presents the results of the five DE variants, where
“Mean Error” represents mean function error values, “Std Dev”
indicates the standard deviation, and “w/t/l” summarizes the
competition results among MGBDE and other algorithms. For
each test function, the best results among the five algorithms are
shown in boldface.

From the results, all the five algorithms could converge
to the global optimum on F). For Fg, they fall into local
minima. Compared to jDE and EPSDE, MGBDE performs
better on five functions, while jDE and EPSDE outperform
MGBDE on three functions. SaDE achieves better results than
MGBDE on Fy, while MGBDE performs better for the rest
of the seven functions. Compared to GBDE, MGBDE sig-
nificantly improves the quality of solutions on the majority
of test functions. Particularly for F% and Fg, GBDE suffers
from premature convergence, while MGBDE could achieve
promising solutions.

E. Comparative Study on Two Real-World
Optimization Problems

In this section, we investigate the performance of our ap-
proaches over two real-world problems, viz., the frequency
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modulated (FM) sound synthesis problem and the spread spec-
trum radar polyphase code design problem [51].

1) FM Sound Synthesis Problem: FM sound synthesis plays
an important role in several modern music systems. It provides
a simple and efficient method creating complex sound timbres.
This section applies the proposed DE-based algorithms to opti-
mize the parameters of an FM synthesizer. Some related works
on solving this problem using evolutionary methods can be
found in [25], [52], and [53]. The details of the problems are
described as follows.

The FM sound synthesis aims to optimize the parameter of an
FM synthesizer with a D-dimensional vector X. In this paper,
we only consider the case of D = 6 by the suggestions of the
literature [25], [53]. The objective of this problem is to optimize
a six-dimensional vector X = {a1, w1, az, ws, az, ws} of the
sound wave given in (17). The problem is to generate a sound
[generated by (17)] similar to the object sound [generated by
(18)]. The formulas for the estimated sound wave and the target
sound are given as follows [53]:

y(t) = aq sin (w1th 4 ag sin (wotl + a3 sin(wstd)))  (17)
yo(t) =1.0sin (0.5¢0 — 1.5sin (4.8t0 + 2.0sin(4.9t0))) (18)

where § = 27/100 and X; € [—6.5,6.35].

The goal of this problem is to minimize the sum of squared
errors between the estimated sound and the target sound,
as given by (18). This problem is a highly complex mul-
timodal one having strong epistasis, with minimum value
fF(X) =0153]

100

FX) = (y(t) —yo(1)*.

t=0

19)

In the experiment, GBDE and MGBDE as well as the other
four DE variants are applied to solve this problem. For all
algorithms, the MAX_FE:s is set to 1.00E+05 according to the
suggestions of the literature [25]. For the rest of the parameter
settings, we keep them the same as described in Section V-C.
Table XIII reports the results of the six DE variants over the FM
synthesizer problem. Results for jDE, NSDE, and DEGL/SAW
are taken from [25, Tbl. XV]. As seen, MGBDE achieves better
results than the other five algorithms in terms of the quality of
the final solutions.

2) Spread Spectrum Radar Polyphase Code Design Prob-
lem: The spread spectrum radar polyphase code design prob-
lem is known for designing radar systems [25], [51]. It can be
formally defined as follows:

Global min f(X) = max {p1(X), ..., 2, (X)}

,xD)ERD\OijS%'}, m=2D —

(20)

where X = {(z1,...
1, and

J

>

k=|2i—j—1|-1

i=1,2,...,D

D
wa2i-1(X) = Zcos i) |,
j=i
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TABLE XII
RESULTS FOR THE TEN CEC 2005 BENCHMARK FUNCTIONS
Functions jDE SaDE EPSDE GBDE MGBDE
Mean Error Std Dev Mean Error Std Dev Mean Error Std Dev Mean Error Std Dev Mean Error Std Dev
Fy 0.00E+00 0.00E+00 | 0.00E+00 0.00E+00 | 0.00E+00 0.00E+00 | 0.00E+00 0.00E+00 0.00E+00  0.00E+00
F; 1.11E-06 1.96E-06 8.26E-06 1.65E-05 4.23E-26 4.07E-26 1.49E+01 1.18E+01 2.96E-08 5.63E-08
F3 1.98E+05 1.10E+05 4.27E+05 2.08E+05 8.74E+05 3.28E+06 7.65E+06 3.39E+05 1.53E+05 1.09E+05
Fy 4.40E-02 1.26E-01 1.77E+02 2.67E+02 3.49E+02 2.23E+03 2.91E+02 4.68E+01 8.68E+00 2.52E+00
Fs S.11E+02 4.40E+02 3.25E+03 5.90E+02 1.40E+03 7.12E+02 2.45E+03 8.91E+02 1.89E+03 6.77E+02
Fg 2.35E+01 2.50E+01 5.31E+01 3.25E+01 6.38E-01 1.49E+00 2.26E+01 1.34E+01 5.11E-08 3.82E-08
F7 1.18E-02 7.78E-03 1.57E-02 1.38E-02 1.77E-02 1.34E-02 8.12E-03 3.96E-03 2.15E-03 2.59E-03
Fg 2.09E+01 4.86E-02 2.09E+01 4.33E-01 2.09E+01 5.81E-02 2.09E+01 5.39E-02 2.09E+01 6.27E-02
Fy 0.00E+00 0.00E+00 2.39E-01 4.33E-01 3.98E-02 1.99E-01 3.98E+00 1.31E+00 1.98E+00 1.57E+00
Fio 5.54E+01 8.46E+00 4.72E+01 1.01E+01 5.36E+01 3.03E+01 3.00E+00 1.14E+00 1.99E+00 1.03E+00
w/t/l 5/2/3 7/2/1 5/2/3 8/2/0 -
TABLE XIII

RESULTS OF MEAN AND STANDARD DEVIATION ACHIEVED BY
S1X ALGORITHMS FOR THE FM SYNTHESIS PROBLEM

Algorithm Mean Std Dev
jDE 7.84E-02  5.83E-03
NSDE 9.46E-03  6.92E-01
ODE 1.58E-22  3.24E-23
DEGL/SAW | 4.82E-09  6.26E-08
GBDE 2.52E-13  3.68E-12
MGBDE 2.31E-28  7.29E-28
TABLE XIV

RESULTS OF MEAN AND STANDARD DEVIATION ACHIEVED BY
S1X ALGORITHMS FOR THE SPREAD SPECTRUM RADAR
POLYPHASE CODE DESIGN PROBLEM

Algorithm D=19 D =20
Mean Std Dev Mean Std Dev
jDE 7.59E-01  3.88E-05 8.34E-01  6.53E-01
NSDE 7.61E-01  4.72E-03 8.43E-01  3.44E-02
ODE 7.81E-01  2.53E-01 8.62E-01  2.03E-01
DEGL/SAW | 7.44E-01  5.84E-01 8.03E-01  2.73E-03
GBDE 7.55E-01  2.29E-01 8.38E-01  1.95E-01
MGBDE 741E-01  2.16E-01 8.19E-01  2.33E-01

J

>

k=[2i—j—1|-1

i=1,2,...,D—1

D
p2i(X) =0.5+ Z cos
j=it1

k) |

Pm+i(X) = — @i(X). 2

By the suggestions of the literature [25], this paper considers
two instances of the radar polyphase code design problem for
D =19 and 20. For all algorithms, the MAX_FEs is set to
5.00E+06 [25]. For the rest of the parameters, we keep the same
values as in the FM synthesis problem. Table XIV presents the
results of the six DE variants over the FM synthesizer problem.
The results for jDE, NSDE, and DEGL/SAW are taken from
[25, Tbl. XIV]. As seen, MGBDE achieves better results than
the other five algorithms for D = 19. For D = 20, DEGL/SAW
obtains the best result, and MGBDE is the second best.

This paper only presents a comparative study on two real-
world optimization problems. More applications will be inves-
tigated in the future work [51], [54], [55].

VI. CONCLUSION REMARKS AND FUTURE WORK

DE is a population-based random optimization algorithm,
which has shown better performance on many real-world and
benchmark optimization problems. There are two important
control parameters, F' and C'R, in the original DE algorithm and
many DE variants. However, it is difficult to determine the opti-
mal control parameters because they are problem dependent.
Although a few improved DE variants have been proposed,
they mainly focuses on adaptive or self-adaptive mechanisms.
To minimize the effects of the control parameters, this paper
presents two versions of improved BBDE variants, namely,
GBDE and MGBDE, in which the parameter F' is eliminated
and C'R is dynamically adjusted during the evolution. Experi-
ments are conducted on 30 benchmark functions and two real-
world problems. The experimental results can be summarized
as follows.

1) Based on the conducted comparative studies on
DE/rand/1, DE/best/1, GBDE, and MGBDE, our pro-
posed MGBDE and GBDE perform better than the other
two basic DE schemes. GBDE achieves better results
than DE/rand/1 and DE/best/1 on high-dimensional mul-
timodal problems, while it shows worse performance than
DE/best/1 on unimodal and simple multimodal functions.
To take advantage of DE/best/l, a hybrid algorithm,
called MGBDE, is proposed by the hybridization of
GBDE and DE/best/1. The results show that MGBDE
achieves better performance than GBDE on many uni-
modal and multimodal functions.

2) Compared to other popular DE variants and similar bare-
bones algorithms, both GBDE and MGBDE outperform
other algorithms on the majority of multimodal functions,
while they obtain worse performance on many unimodal
and simple multimodal functions. It demonstrates that
the proposed approaches are beneficial for solving multi-
modal problems. The possible reason is that the Gaussian
sampling method can keep up the population diversity
and improve the exploration.
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GBDE is helpful to solve multimodal functions, while
DE/best/1 is beneficial for solving unimodal functions. It is dif-
ficult to balance these two DE mutation strategies in MGBDE.
In this paper, a simple alternative method is used to determine
the mutation strategies. Other alternative methods will be tried
in the future work.
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