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Abstract As a relatively new global optimization tech-
nique, artificial bee colony (ABC) algorithm becomes popu-
lar in recent years for its simplicity and effectiveness. How-
ever, there is still an inefficiency in ABC regarding its solu-
tion search equation, which is good at exploration but poor at
exploitation. To overcome this drawback, a Gaussian bare-
bones ABC is proposed, where a new search equation is
designed based on utilizing the global best solution. Further-
more, we employ the generalized opposition-based learning
strategy to generate new food sources for scout bees, which
is beneficial to discover more useful information for guiding
search. A comprehensive set of experiments is conducted on
23 benchmark functions and a real-world optimization prob-
lem to verify the effectiveness of the proposed approach.
Some well-known ABC variants and state-of-the-art evo-
lutionary algorithms are used for comparison. The experi-
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mental results show that the proposed approach offers higher
solution quality and faster convergence speed.
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1 Introduction

A wide variety of real-word problems can be converted into
optimization problems and then be solved with optimiza-
tion techniques. Unfortunately, many of these problems are
often characterized as non-convex, discontinuous or non-
differentiable, thus it is difficult to deal with them with tra-
ditional optimization algorithms. Evolutionary algorithms
(EAs), as a powerful tool, are playing an increasingly impor-
tant role in solving such kind of problems nowadays. EAs
are stochastic search algorithms that simulate the evolution-
ary process of selection, variation and genetics in nature
(Bäck 1996). The most prominent EAs proposed in the lit-
eratures are genetic algorithm (GA) (Tang et al. 1996), evo-
lution strategy (ES) (Beyer and Schwefel 2002; Auger and
Hansen 2005), particle swarm optimization (PSO) (Kennedy
and Eberhart 1995; Eberhart and Shi 2001), ant colony opti-
mization (ACO) (Dorigo and Di Caro 1999), differential evo-
lution (DE) (Storn and Price 1997; Neri and Tirronen 2010;
Das and Suganthan 2011), artificial bee colony (ABC) algo-
rithm (Karaboga 2005), and so on.

In this paper, we focus on ABC algorithm, proposed by
Karaboga (2005) and Karaboga and Basturk (2007). Like
PSO and ACO that mimic the collective intelligent behav-
ior of social insect swarms, ABC algorithm simulates the
foraging behavior of a honeybee swarm. A recent compar-
ative study (Karaboga and Akay 2009) has shown that the
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performance of ABC is competitive to that of some pop-
ular EAs such as PSO and DE. Due to its simplicity yet
effectiveness, ABC has been widely used to solve variant
real-world optimization problems, such as symbolic regres-
sion (Karaboga et al. 2012b), neural network (Yeh and Hsieh
2012; Garro et al. 2011), and vehicle routing problem (Szeto
et al. 2011).

However, similar to other EAs, ABC also tends to suffer
from the problem of poor convergence. The possible reason
is that the solution search equation which is used to gener-
ate new candidate solutions, has good exploration capability
but poor exploitation capability (Zhu and Kwong 2010), and
thereby it causes the problem of slow convergence speed.
Therefore, how to enhance the exploitation of ABC for fast
convergence is a challenging research topic. Recently, there
is an increasing research trend in the ABC community (Zhu
and Kwong 2010; Banharnsakun et al. 2011; Gao and Liu
2011, 2012; Gao et al. 2012, 2013a; Li et al. 2012) that the
global best solution of current population is used in the solu-
tion search equation as a source of good information to guide
the search behavior. For example, as one of the most represen-
tative works of this trend, Zhu and Kwong (2010) proposed a
global best (gbest)-guided ABC (GABC) algorithm based on
the inspiration of PSO. In GABC, the information of the gbest
solution is incorporated into the solution search equation of
ABC to improve the exploitation. However, it is necessary to
note that although the information of the best solution is ben-
eficial to enhance the exploitation, some side effects can also
be easily triggered such as the algorithm becomes too greedy
or not reliable, if the mechanism of utilizing the information
is not well designed.

Following this active research trend, to improve ABC’s
exploitation and also keep its reliability, we propose a
Gaussian bare-bones ABC (GBABC) algorithm based on
the utilization of the global best solution. In GBABC, a new
Gaussian bare-bones search equation is designed to generate
new candidate solutions instead of the old one. An impor-
tant feature of this new search equation is that positions of
new food sources are sampled through a Gaussian distri-
bution with dynamical mean value and variance value. In
addition to the new search equation, another modification is
suggested in the scout bee phase of GBABC. In the basic
ABC, the discarded food sources in the scout bee phase
are replaced with randomly generated candidate solutions,
however, this may cause a problem that the already obtained
search experience would be lost. Hence, to preserve search
experience for scout bees, the generalized opposition-based
learning (GOBL) strategy is employed to generate new food
sources. To verify the performance of GBABC, a compre-
hensive set of experiments is conducted on 23 well-known
benchmark functions, including shifted and/or rotated types,
and a real-world optimization problem. The experimental
results demonstrate the effectiveness of GBABC in solving

complex numerical optimization problems when compared
with other algorithms.

The rest of this paper is organized as follows. In Sect. 2,
the related works are briefly reviewed, including the basic
ABC and some improved ABCs. In Sect. 3, we present the
proposed approach in detail. Section 4 presents and discusses
the experimental results. Finally, the conclusion is drawn in
Sect. 5.

2 Related works

2.1 Basic ABC

The ABC algorithm simulates the intelligent foraging behav-
ior of a honeybee swarm. In ABC, the colony of artificial
bees consists of three different kinds of bees: employed bees,
onlooker bees and scout bees (Karaboga et al. 2012a). First,
employed bees are responsible for exploring food sources
near the hive, and then, after all the employ bees finish their
searching, they will share the information with the onlooker
bees about the nectar amounts and the positions of food
sources on the dance area. Second, after evaluating the infor-
mation from the employed bees, the onlooker bees decide to
select a good part of food sources for further exploitation.
More nectar amounts a food source owns, higher probabil-
ity of being selected by onlooker bees it has. Last, if a food
source is exhausted, its associated employed bee transforms
into a scout bee, and then start to randomly search for a new
source in the vicinity of the hive. Note that the number of
onlookers equals to that of employed bees.

Similar to other EAs, ABC also starts with an initial pop-
ulation of SN randomly generated food sources. Each food
source Xi = (xi,1, xi,2, . . . , xi,D) corresponds to a candidate
solution to the optimization problem, and D denotes the prob-
lem dimension size. After initialization, the above-described
search process of ABC can be divided into three phases as
follows.

• Employed bee phase
In this phase, each employed bee generates a new food
source Vi = (vi,1, vi,2, . . . , vi,D) in the neighborhood
of its parent position Xi = (xi,1,i,2 , . . . , xi,D) using the
following solution search equation.

vi, j = xi, j + φi, j · (xi, j − xk, j ) (1)

where k ∈ {1, 2, . . . , SN } and j ∈ {1, 2, . . . , D} are
randomly chosen indexes; k has to be different from i ;
φi, j is a random number in the range [−1, 1]. If the new
food source Vi is better than its parent Xi , then Xi is
replaced with Vi .

• Onlooker bee phase
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After receiving the information from the employed bees,
the onlooker bees begin to select food sources for
exploitation. The probability of selecting a food source
depends on its nectar amount, which can be calculated as
follows.

pi = fiti
∑SN

j=1 fit j
(2)

where pi is the selection probability and fiti is the fit-
ness value of the ith food source. Once an onlooker bee
completes its selection, it would also produce a modifi-
cation on its chosen food source using Eq. (1). As in the
case of the employed bees, the greedy selection method is
employed to retain a better one from the old food source
and the modified food source as well.

• Scout bee phase
If the fitness value of a food source keeps unchanged
for at least limit times, this food source is considered
to be exhausted, where limit is a control parameter and
has predefined value. It is worth to note that, except for
some common control parameters also shared with other
EAs such as the population size, limit is the only single-
specific parameter in ABC. Under this case, the food
source has to be abandoned, and a new food source is
generated to replace it as follows.

xi, j = a j + rand j · (b j − a j ) (3)

where [a j , b j ] is the boundary constraint for the jth
dimensional variable, and rand j is a uniformly distrib-
uted random number within the range [0, 1].

2.2 Improved ABCs

Attracted by the simplicity and efficiency of ABC, many
researchers around the world have devoted their signifi-
cant efforts to the improvements on ABC. As a result,
a number of ABC variants have been proposed. In this
subsection, we briefly review these improved ABCs, and
categorize them into twofold. The first category focuses
on the improvements on the solution search equation,
while the second one is the hybridization of ABC with
other search operators (Gao et al. 2013a). It is neces-
sary to emphasize that our work falls in both of the cate-
gories.

The first category includes the following representative
works of which the contributions are mainly the improve-
ments on the solution search equation. In Zhu and Kwong
(2010), inspired by PSO, Zhu and Kwong proposed a gbest-
guided ABC (GABC) algorithm which incorporates the
information of the global best solution into the solution

search equation to improve the exploitation. Accordingly,
the improved solution search equation contains a new added
term and it is called the gbest term. The reported experi-
mental results show that GABC outperforms the basic ABC
on many used test functions. In TSai et al. (2009), inspired
by the concept of Newtonian law of universal gravitation,
TSai and Pan et al. proposed an interactive ABC (IABC).
In IABC, the universal gravitations between the onlooker
bees and the selected employed bees are exploited, and thus
the solution search equation used for the onlooker bees is
reformed to take into account the factor of universal grav-
itation. In Rajasekhar et al. (2011b), instead of the origi-
nal solution search equation, Rajasekhar and Abraham et
al. used a Lévy mutation to generate new food sources
in the neighborhood of the global best solution of cur-
rent population. Akay and Karaboga (2012) investigated
the effects of two factors on the performance of ABC: fre-
quency of the perturbation and magnitude of the perturba-
tion. Consequently, two new parameters are introduced to
control the both factors, and then a modified ABC algo-
rithm is proposed. Note that the control parameter of con-
trolling the frequency of perturbation is the same as the
crossover probability of other EAs in essence. Based on
the best-so-far solutions, Banharnsakun et al. (2011) pro-
posed an improved ABC variant. In their approach, the
search direction of onlooker bees is biased using the best-
so-far solutions-based method, to accelerate the convergence
process.

Inspired by the mutation strategies of DE, Gao and Liu et
al. developed several different versions of improved search
equations in their literatures (Gao and Liu 2011, 2012; Gao et
al. 2012). In Gao and Liu (2011), they proposed two improved
versions of solution search equations, namely ABC/best/1
and ABC/rand/1, which correspond to DE’s mutation strate-
gies DE/best/1 and DE/rand/1. Furthermore, they introduced
a selective probability parameter to control the frequency
of using these two improved search equations for a better
balance between the exploration and exploitation. In Gao
et al. (2012), compared the performance of two different
ABC variants which, respectively, employ the ABC/best/1
and ABC/best/2 search equations. The experimental results
show that ABC/best/1 greatly outperforms ABC/best/2. In
Gao and Liu (2012), by employing the same ABC/best/1
search equation, Gao and Liu proposed a modified ABC
(MABC) algorithm. In MABC, the framework is different
from that of the basic ABC, which excludes the probabilistic
selection scheme and scout bee phase. In Das et al. (2013)
proposed a novel variant of ABC called fitness learning-based
ABC with proximity stimuli (FlABCps). In FlABCps, the
solution search equation updates more than one dimension
to produce a new candidate solution based on the Rechen-
bergs 1/5th mutation rule, and the knowledge of the top q%
food sources is also used in the improved solution search
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equation. Recently, Bansal et al. (2014) proposed a self-
adaptive ABC (SAABC) algorithm to balance the exploration
and exploitation abilities of ABC. In SAABC, a self-adaptive
step size mechanism is introduced to fine-tune the control
parameters of the solution update strategy, and the para-
meter limit is also set in an adaptive manner. In Karaboga
and Gorkemli (2014), proposed a quick ABC (qABC) algo-
rithm to improve tshe performance of ABC in terms of local
search ability. In qABC, the behavior of the onlooker bees
is modified to focusing on exploiting the neighborhood food
source.

The second category is reviewed as follows. Kang et al.
(2009) proposed a hybrid simplex ABC algorithm by com-
bining Nelder–Mead simplex search (NMSS) method with
ABC. Because the NMSS method is a local descent algo-
rithm, to some extent, it can be considered as a local exploita-
tion tool in their proposed approach. Similarly, Kang et al.
(2011) also developed a Rosenbrock ABC algorithm, where
the Rosenbrock method is modified for multimodal opti-
mization problems and then introduced into ABC as a local
exploitation tool as well. In Alatas (2010), Alatas made two
modifications for ABC based on the concept of chaotic maps.
The first modification is to use the chaotic maps to initialize
the colony, and the second one is to use the chaotic search
for the scout bees to generate new random food sources.
Rajasekhar et al. (2011a, b) proposed two versions of mutated
ABC variants based on the Sobol and Lévy distributions.
The reported experimental results show the superiority of the
mutation operations, especially on high dimensional prob-
lems. Also based on the Lévy distribution, Sharma et al.
(2013) incorporated the Lévy flight random walk into ABC
as a local search operator. In Bansal et al. (2013), proposed a
Memetic ABC (MeABC) by combing a local search phase,
where golden section search (GSS) approach is used to con-
trol the step size. El-Abd (2012) introduced the concept of
GOBL into ABC which uses the GOBL strategy in the ini-
tialization and generation jumping phases. Gao et al. (2013a)
used the orthogonal experimental design to form an orthogo-
nal learning strategy for ABC to discover more useful infor-
mation from the search experiences. In Gao et al. (2013b),
to improve the exploitation of ABC, Gao and Liu et al.
adopted the Powell’s method as a local search tool. In this
way, ABC and Powell’s method have complementary advan-
tages. In the procedure of initializing population, Sharma
and Pant (2013) designed a novel method to initialize the
positions of food sources, which are located on intermediate
positions between the uniformly generated random numbers
and random numbers generated by opposition-based learning
(OBL). The corresponding algorithm is called intermediate
ABC (I-ABC).

In this subsection, we only presented a brief overview of
some related works, interested readers can refer to the good
survey of ABC in Karaboga et al. (2012a).

3 Gaussian bare-bones ABC (GBABC)

3.1 Gaussian bare-bones search equation

Previously, we briefly reviewed some representative ABCs
in Sect. 2.2. Among these improved ABCs, a considerable
part of research efforts is focused on modifying the solution
search equation with the global best solution of current popu-
lation. One of the representative works of this type is GABC
developed by Zhu and Kwong (2010). In GABC, the infor-
mation of gbest is utilized to guide the search of new food
sources, and the modified solution search equation in GABC
is described as follows:

vi, j = xi, j + φi, j · (xi, j − xk, j )+ ψi, j · (y j − xi, j ) (4)

where the third term in the right-hand side of Eq. (4) is a new
added term called gbest term, y j is the j th element of the
global best solution,ψi, j is a uniform random number within
[0,C], and C is a nonnegative constant and is suggested to
set to 1.5.

Although this new search equation has been shown supe-
rior to the original one, its mechanism of utilizing the gbest
can still cause inefficiency to the search ability of the algo-
rithm and slow down convergence speed. Because the guid-
ance of the last two terms may be in opposite directions,
and this can cause an “oscillation” phenomenon (Zhan et al.
2011; Gao et al. 2013a). For the clearness and easiness of
understanding, we first simplify Eq. (4) as Eq. (5) by moving
the first term xi, j and two weight components φi, j and ψi, j

as follows:

vi, j = (xi, j − xk, j )+ (y j − xi, j ) (5)

In Eq. (5), we consider the following case for a minimiza-
tion problem to demonstrate the oscillation phenomenon. At
first, Xi locates between Xk and Y (gbest), and the distance
between Xi and Y is farther than the one between Xi and Xk ,
as shown in Fig. 1a, and then Xi will move toward Y for its
larger pull. However, the distance between Xi and Xk will
increase while Xi moving toward Y , as shown in Fig. 1b. In
this case, Xi will be puzzled in deciding where to stay, and
thus the oscillation would occur (Zhan et al. 2011; Gao et al.
2013a).

To overcome such issue, we design a Gaussian bare-
bones search equation inspired by the concept of BBPSO
(Kennedy 2003). It is well known that PSO is a popular swarm
intelligence-based algorithm which simulates the behavior
of birds flocking and fish schooling (Kennedy and Eber-
hart 1995). In PSO, the flying trajectory of each particle is
affected by its personal best position (pbest) and its neighbor-
hood’s best position (gbest). Some theoretical studies (Clerc
and Kennedy 2002; van den Bergh and Engelbrecht 2006)
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Fig. 1 Oscillation phenomenon
in GABC. a Xi moves toward
Y . b Xi moves toward Xk

provided an analysis about particle’s trajectory that each par-
ticle is able to converge to a stable point, that is,

lim
G→+∞ X G

i = c1 · pbestGi + c2 · gbest

c1 + c2
(6)

where G is the generation counter, c1 and c2 are two learning
factors.

Based on PSO’s convergence behavior, in BBPSO,
Kennedy (2003) proposed to eliminate the velocity formula
and update particle’s position according to the following
equation.

X G+1
i = N

(
pbestGi + gbest

2
,

∣
∣
∣pbestGi − gbest

∣
∣
∣

)

(7)

where N (·) represents a Gaussian distribution with mean
(pbestGi + gbest)/2 and variance

∣
∣pbestGi − gbest

∣
∣. Further-

more, to speed up convergence, Kennedy (2003) proposed a
modified BBPSO using an alternative mechanism as follows.

xG+1
i, j

=
⎧
⎨

⎩

N

(
pbestGi, j +gbest j

2 ,

∣
∣
∣pbestGi, j −gbest j

∣
∣
∣

)

if rand j >0.5

pbestGi, j otherwise

(8)

where rand j is a random value within [0, 1] for the j th dimen-
sion. Note that this mechanism provides a 50 % chance that
the j th dimension of particle Xi is derived from its personal
best position (Wang et al. 2013).

Inspired by this mechanism of updating particle’s position,
a more efficient search equation can be designed to acceler-
ate ABC’s convergence by elaborately using the global best
solution. Therefore, we propose a new Gaussian bare-bones
search equation for ABC to generate positions of new food
sources, that is,

vG
i, j =

⎧
⎨

⎩

N

(
xG

i, j +xbest, j

2 ,

∣
∣
∣xG

i, j − xbest, j

∣
∣
∣

)

if rand j ≤ C R

xi, j otherwise

(9)

where Xbest is the global best solution of current population,
and CR is a new introduced parameter which controls how
many elements in expectation can be derived from its par-
ent Xi for Vi . Since there is only one dimension of Xi to
be updated for Vi in the original search equation, the intro-
duction of C R is helpful to inherit more information from
Xbest to enhance the exploitation. The setting of C R will be
discussed in the next Sect. 4.1.

In Eq. (9), new candidate solutions are generated in the
search space formed by the current solution and the global
best solution. As a result, the positions of these new candidate
solutions will be located around the center position between
Xi and Xbest. And the search behavior will gradually turn
to exploitation from exploration. At the initial evolutionary
stage, the search behavior focuses on exploration due to the
large variance (initially, Xi will be far away from Xbest). With
increasing the number of generations, the variance becomes
smaller (Xi will approach to Xbest), so the search behavior
will turn to exploitation. Compared with the original search
equation Eq. (1) and the modified one of GABC Eq. (4), the
Gaussian bare-bones search equation Eq. (9) has two obvious
advantages. First, since Eq. (1) is good at exploration but poor
at exploitation, it may cause poor convergence. However,
Eq. (9) takes advantages of the global best solution to guide
the search of new candidate solutions, which is beneficial
to enhance the exploitation. Second, in Eq. (4), the last two
terms (xi, j − xk, j ) and (y j − xi, j )may be in opposite direc-
tions, and thereby this may result in an “oscillation” phenom-
enon and cause inefficiency to the search ability of the algo-
rithm. But Eq. (9) only uses a Gaussian distribution to gen-
erate positions, which can be considered as one single term,
therefore, it is easily capable to avoid the oscillation phenom-
enon and maximize the search ability of the algorithm.

From the above explanation, it is clear that the new
designed solution search equation described by Eq. (9) is
better at exploitation than the original one. However, it may
also run the risk of reducing the exploration of ABC. In other
words, a contradiction is arising that the original solution
search equation is good at exploration but may results in
slow convergence, while the new one is good at exploitation
but may cause premature convergence. It is well known that
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Fig. 2 3-D plot of the Shekel’s Foxholes function

both the exploration and exploitation capabilities are nec-
essary for EAs. In practice, however, these two capabilities
contradict each other. To achieve good performances on prob-
lem optimizations, they should be well balanced. From the
principle of labor division of artificial bees in ABC, we can

observe that the employed bees are designed to explore new
food sources, while the onlooker bees are responsible for
exploiting those explored food sources. Therefore, following
this basic idea, we employ a simple but efficient method to
address this contradiction that the employed bees still use the
original solution search equation for generating new candi-
date solutions, but the onlooker bees use the new one. Under
this case, our approach attempts to balance the exploitation
and exploration.

To better illustrate the difference of search behaviors
between the Gaussian bare-bones search equation and the
original one, the two-dimensional Shekel’s Foxholes func-
tion shown in Fig. 1 is employed as a case study. This func-
tion has 24 distinct local minima and one global minimum
f (−32,−32) = 0.998004 in the range [65.536, 65.536]2,
its detailed definition can be found in Yao’s literature (Yao et
al. 1999). In this case study, both the basic ABC and its mod-
ified version with the Gaussian bare-bones search equation
for onlooker bees (ABC-BB for short), are used to solve the
Shekel’s Foxholes problem, respectively. The population dis-
tributions of ABC and ABC-BB at different generations are
plotted. Both ABC and ABC-BB have the same number of
food sources SN = 30, and C R = 0.3 for ABC-BB. Figure 2
shows the contour plots of the Shekel’s Foxholes function,
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Fig. 3 Population distributions of ABC and ABC-BB at different generations. a ABC at the first generation. b ABC at the 15th generation. c ABC
at the 30th generation. d ABC-BB at the first generation. e ABC-BB at the 15th generation. f ABC-BB at the 30th generation
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and Fig. 3 shows the population distributions of ABC and
ABC-BB at the first, 15th and 30th generations. As seen, at
the beginning of evolution, the food sources of both ABC and
ABC-BB almost cover the entire search space, respectively.
However, the search regions of ABC-BB converge faster than
those of ABC as the evolution proceeds. It implies that ABC-
BB can converge to the global optimum rapidly with the help
of Gaussian bare-bones search equation.

3.2 Modified scout bee phase

In the original scout bee phase, if a food source cannot be
improved further for at least limit times, it is considered to
be exhausted and would be abandoned. As a result, a new
food source is generated in a random manner by the scout
bee to replace the exhausted one. In this case, however, it
may cause a problem that the already obtained search expe-
riences would be lost, because the exhausted food source
may contain more useful information than the new random
one for guidance of search process. Hence, we introduce the
GOBL strategy into the scout bee phase, which is beneficial
to preserve the search experiences for the efficiency of the
algorithm. The GOBL strategy is an enhanced version of the
concept of opposition-based learning (Tizhoosh 2005; Rah-
namayan et al. 2008). The main idea behind GOBL is that
when evaluating a candidate solution X to a given problem,
simultaneously computing its opposite solution X̆ can pro-
vide a higher chance for X̆ to be closer to the global optimum
than a random candidate solution (Wang et al. 2011).

Let Xi = (xi,1, xi,2, . . . , xi,D) be a candidate solution to
an optimization problem of D-dimension, and its opposite
solution X̆ = (x̆1, x̆2, . . . , x̆D) is defined by:

x̆ j = k · (da j + db j )− x j (10)

where k ∈ U (0, 1) is a generalized coefficient. [da j , db j ]
is the dynamic boundary constraint for the j th dimensional
variable, which is defined as follows.

{
da j = min(xi, j )

db j = max(xi, j )
(11)

After using GOBL, however, an opposite candidate solu-
tion may jump out of the initial box-constraint [a j , b j ], this
implies that GOBL fails to generate a feasible candidate solu-
tion. To avoid this case, the non-feasible opposite solution is
replaced with a random one using Eq. (3). To be specific, first,
the opposite candidate solution of an exhausted food source
is generated by Eq. (10), and a random candidate solution
generated by Eq. (3) is also provided at the same time. And
then the better one between the opposite candidate solution
and the random candidate solution is picked out to replace
the exhausted food source. This procedure can be formulated

as follows.

X G+1
i =

{
X̆i if f (X̆i ) ≤ f (Vi )

Vi otherwise
(12)

where Vi represents a new random candidate solution. Note
that there is only one food source can be abandoned at each
generation in basic ABC, while no such limitation exists in
our approach. In other words, if more than one food source
have not been improved for at least limit times, all of them
can be abandoned. In this way, it is helpful to avoid being
trapped into local optimal when solving complex problems.

3.3 Pseudocode of GBABC

Compared with basic ABC, GBABC makes two modifica-
tions. First, in the onlooker bee phase, the original solution
search equation is replaced with the new deigned Gaussian
bare-bones one. Second, in the scout bee phase, the GOBL
strategy is employed to generate new food sources for the
scouts except for the random food sources. The pseudocode
of GBABC is described in Algorithm 1, where F Es is the
number of used fitness function evaluations, and Max F Es,
as the stopping criterion, is the maximal number of fitness
function evaluations. tr iali records the unchanged times of
Xi ’s fitness value.

4 Experimental verification

4.1 Benchmark functions

To verify the performance of our approach, a set of 23 bench-
mark functions is used in the following experiments. The first
13 test functions are well-known scalable problems (Yao et
al. 1999; Wang et al. 2013). Among these problems, F01–F04
are unimodal functions, and F05 is the Rosenbrock function
which is multimodal when D > 3 (Shang and Qiu 2006). F06
is a step function which has one minimum and is discontinu-
ous, while F07 is a noisy quartic function. F08–F13 are multi-
modal functions with many local minima. The remaining 10
functions (F14–F23) are shifted and/or rotated types taken
from the CEC 2005 competition (Suganthan et al. 2005).
Brief descriptions of these test functions are summarized in
Table 1. The detailed definitions of functions F01–F13 can
be found in Yao et al. (1999) and Wang et al. (2013), while
those of functions F14–F23 can be found in Suganthan et al.
(2005).

4.2 Adjusting the parameter CR

In GBABC, only one additional parameter C R is introduced
whose value may affect the performance. Therefore, in the
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Algorithm 1 Pseudocode of GBABC
1: Randomly generate SN candidate solutions {Xi | i =

1, 2, · · · , SN} as food sources;
2: F Es = SN ;
3: while F Es ≤ Max F Es do
4: /* Employed bee phase */
5: for i = 1 to SN do
6: Generate a new candidate solution Vi according to Eq. (1);
7: if f (Vi ) < f (Xi ) then
8: Replace Xi with Vi ;
9: tr iali =0;
10: else
11: tr iali = tr iali + 1;
12: end if
13: F Es = F Es + 1;
14: end for
15: /* Onlooker bee phase */
16: Calculate the probability pi according to Eq. (2);
17: for i = 1 to SN do
18: Choose a food source X j from the current population P by the

roulette wheel selection mechanism;
19: Generate a new candidate solution Vj according to Eq. (9);
20: if f (Vj ) < f (X j ) then
21: Replace X j with Vj ;
22: tr ial j =0;
23: else
24: tr ial j = tr ial j + 1;
25: end if
26: F Es = F Es + 1;
27: end for
28: /* Scout bee phase */
29: for i = 1 to SN do
30: if tr iali > limit then
31: tr iali =0;
32: Generate an opposite solution of Xi , X̆i , according to Eq.

(10);
33: Randomly generate a new candidate solution Vi according to

Eq. (3);
34: if f (X̆i ) < f (Vi ) then
35: Replace Xi with X̆i ;
36: else
37: Replace Xi with Vi ;
38: end if
39: F Es = F Es + 2;
40: end if
41: end for
42: end while

subsection, we investigate different C R values to select the
best one for maximizing the performance of GBABC. The
available C R values are in the range [0.1, 0.9] in steps of
0.1, i.e., there are nine different choices for C R in total. All
the functions are tested at D = 30, the maximal number of
fitness function evaluations (Max F Es) is set to 5,000 · D
for F01–F13, and 10,000 · D for F14–F23 according to the
suggestions in Suganthan et al. (2005). The number of food
sources SN and limit are set to 30 and 100, respectively.
Each test function is run 30 times, and the mean error ( f (X)−
f (X∗), X∗ is the global optimum) and standard deviation
values are recorded.

Table 1 The 23 benchmark functions used in the experiments, where
D is the dimension of the functions, and X∗ is the global optimum of
the function

Functions Name Search range f (X∗)

F01 Sphere [−100, 100] 0

F02 Schwefel 2.22 [−10, 10] 0

F03 Schwefel 1.2 [−100, 100] 0

F04 Schwefel 2.21 [−100, 100] 0

F05 Rosenbrock [−30, 30] 0

F06 Step [−100, 100] 0

F07 Quartic [−1.28, 1.28] 0

F08 Schwefel 2.26 [−500, 500] −418.98 · D

F09 Rastrigin [−5.12, 5.12] 0

F10 Ackley [−32, 32] 0

F11 Griewank [−600, 600] 0

F12 Penalized 1 [−50, 50] 0

F13 Penalized 2 [−50, 50] 0

F14 Shifted sphere [−100, 100] −450

F15 Shifted Schwefel 1.2 [−100, 100] −450

F16 Shifted rotated high
conditioned elliptic

[−100, 100] −450

F17 Shifted Schwefel 1.2
with noise in
fitness

[−100, 100] −450

F18 Schwefel 2.6 with
global optimum on
bounds

[−100, 100] −310

F19 Shifted Rosenbrock [−100, 100] 390

F20 Shifted rotated
Griewank without
bounds

[0, 600] −180

F21 Shifted rotated
Ackley with global
optimum on
bounds

[−32, 32] −140

F22 Shifted Rastrigin [−5, 5] −330

F23 Shifted rotated
Rastrigin

[−5, 5] −330

To simplify the final results, Table 2 only presents the
relatively good values of C R which can yield better results
than others. From the results, it is clear that a higher value
of C R is more suitable for solving unimodal problems (e.g.,
the results on F01, F02 and F04), while a lower one is bet-
ter for multimodal problems (e.g., the results on F07, F08
and F09). The reason may be that a higher value of C R can
make the new candidate solution inherit more information
from the global best solution, which is helpful to enhance
the exploitation for solving unimodal problems. But a lower
value of C R is better at exploration for solving multimodal
problems.
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Table 2 The results of GBABC with different CR values

Functions CR = 0.1 CR = 0.3 CR = 0.5 CR = 0.8
Mean error± std dev Mean error± std dev Mean error± std dev Mean error± std dev

F01 3.15E−46 ± 2.09E−46 2.63E−49 ± 5.27E−49 3.91E−51 ± 1.26E−50 1.56E−51 ± 1.85E−51

F02 2.51E−25 ± 2.13E−25 2.53E−31 ± 2.69E−31 1.85E−33 ± 2.41E−33 1.11E−35 ± 1.20E−35

F03 1.25E+02 ± 8.59E+01 4.48E+01 ± 4.77E+01 2.44E+01 ± 5.81E+01 3.23E+01 ± 3.29E+01

F04 1.67E−02 ± 8.36E−03 1.39E−07 ± 1.88E−07 2.21E−07 ± 4.79E−07 1.28E−07 ± 2.92E−07

F05 5.00E+00 ± 7.15E+00 3.63E+00 ± 3.40E+00 8.08E+00 ± 8.17E+00 1.12E+01 ± 1.76E+01

F06 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

F07 7.05E−05 ± 6.04E−05 9.82E−05 ± 7.06E−05 1.51E−04 ± 1.04E−04 2.35E−04 ± 1.95E−04

F08 3.82E−04 ± 3.27E−13 3.82E−04 ± 4.54E−13 1.58E+01 ± 4.03E+01 1.98E+01 ± 4.41E+01

F09 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 8.23E−15 ± 2.40E−14 6.67E−02 ± 2.49E−01

F10 4.44E−16 ± 0.00E+00 4.44E−16 ± 0.00E+00 4.44E−16 ± 0.00E+00 4.44E−16 ± 0.00E+00

F11 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

F12 1.57E−32 ± 5.47E−48 1.57E−32 ± 5.47E−48 1.57E−32 ± 5.47E−48 1.57E−32 ± 5.47E−48

F13 1.35E−32 ± 5.47E−48 1.35E−32 ± 5.47E−48 1.35E−32 ± 5.47E−48 1.91E−31 ± 8.96E−31

F14 1.00E−13 ± 2.40E−14 6.44E−14 ± 1.93E−14 6.82E−14 ± 2.27E−14 7.58E−14 ± 2.68E−14

F15 1.44E+03 ± 3.76E+02 2.94E+02 ± 1.11E+02 3.86E+01 ± 5.96E+01 9.48E−01 ± 1.08E+00

F16 5.03E+06 ± 1.60E+06 2.80E+06 ± 1.02E+06 2.95E+06 ± 1.28E+06 3.40E+06 ± 1.27E+06

F17 2.02E+04 ± 2.69E+03 7.38E+03 ± 1.46E+03 1.47E+03 ± 5.07E+02 9.73E+01 ± 7.54E+01

F18 4.21E+03 ± 5.55E+02 2.43E+03 ± 4.72E+02 2.82E+03 ± 6.80E+02 3.49E+03 ± 5.71E+02

F19 2.82E+01 ± 6.13E+01 3.64E+01 ± 4.94E+01 8.56E+01 ± 1.27E+02 1.09E+02 ± 1.09E+02

F20 8.84E−03 ± 9.58E−03 1.86E−02 ± 1.63E−02 1.62E−02 ± 1.37E−02 1.50E−02 ± 1.39E−02

F21 2.08E+01 ± 7.29E−02 2.09E+01 ± 8.62E−02 2.09E+01 ± 6.50E−02 2.09E+01 ± 5.94E−02

F22 9.28E−14 ± 2.74E−14 6.63E−14 ± 2.12E−14 8.53E−14 ± 2.84E−14 9.85E−14 ± 3.26E−14

F23 1.39E+02 ± 1.83E+01 1.28E+02 ± 1.77E+01 9.19E+01 ± 1.87E+01 8.08E+01 ± 1.55E+01

To select the best value of C R at a statistical level,
the Friedman test is conducted to obtain average rankings
according to the suggestions in García et al. (2009, 2010).
Table 3 shows the average rankings of GBABC with differ-
ent C R values. As seen, C R = 0.3 achieves the best average
ranking. Therefore, in the following experiments, the para-
meter C R is set to 0.3.

4.3 Effects of each modification

Compared with basic ABC, we make two modifications in
GBABC, i.e., the Gaussian bare-bones search equation and
modified scout bee phase. To investigate how much these
two modifications make contribution to improving the per-
formance of the algorithm, respectively, three relative vari-
ants are used for verification. They are listed as follows.

• ABC without any modification, i.e., basic ABC.
• ABC with the Gaussian bare-bones search equation for

onlooker bees (ABC-BB for short).
• ABC with the modified scout bee phase (ABC-GOBL for

short).

Table 3 Average rankings of GBABC with different CR values, and
the best value is shown in boldface

C R values Average rankings

C R = 0.1 2.78

CR = 0.3 2.26

C R = 0.5 2.35

C R = 0.8 2.61

Therefore, there are three different algorithms are used
to compare with GBABC, i.e., the basic ABC, ABC-BB and
ABC-GOBL. For a fair comparison, all the competitive algo-
rithms have the same parameter settings, i.e., the number of
food sources SN is set to 30, and limit equals to 100. The
stopping criterion is the same as in Sect. 4.2. Each algorithm
is run 30 times per function, and the mean error and stan-
dard deviation values are recorded. Table 4 presents the final
results of these four algorithms. The best values are marked
in boldface.

From the comparison of ABC-BB with ABC, it can be
seen that ABC-BB outperforms ABC on the majority of
test functions, and it only loses on F05 and F19. For the
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Table 4 The results achieved by the original ABC, ABC-BB, ABC-GOBL and GBABC at D = 30

Functions ABC ABC-BB ABC-GOBL GBABC
Mean error ± std dev Mean error ± std dev Mean error ± std dev Mean error ± std dev

F01 5.01E−37 ± 1.11E−36 9.35E−50 ± 1.31E−49 4.11E−37 ± 6.90E−37 2.63E−49 ± 5.27E−49

F02 1.01E−19 ± 5.54E−20 4.33E−31 ± 5.88E−31 8.70E−20 ± 4.82E−20 2.53E−31 ± 2.69E−31

F03 6.21E+03 ± 1.06E+03 2.58E+03 ± 8.25E+02 2.30E+03 ± 1.96E+03 4.48E+01 ± 7.18E+01

F04 2.58E+01 ± 6.91E+00 1.66E−02 ± 4.03E−03 7.76E−02 ± 4.98E−02 1.39E−07 ± 1.88E−07

F05 6.44E−01 ± 7.06E−01 1.25E+01 ± 5.27E+00 3.83E−01 ± 9.18E−01 3.63E+00 ± 3.40E+00

F06 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

F07 2.91E−01 ± 8.41E−02 1.74E−02 ± 7.49E−03 9.23E−05 ± 6.89E−05 9.82E−05 ± 7.06E−05

F08 3.82E−04 ± 1.20E−12 3.82E−04 ± 4.70E−13 3.82E−04 ± 4.04E−12 3.82E−04 ± 4.54E−13

F09 4.75E−14 ± 2.12E−13 0.00E+00 ± 0.00E+00 4.86E−15 ± 1.40E−14 0.00E+00 ± 0.00E+00

F10 6.01E−14 ± 1.02E−14 1.89E−14 ± 3.60E−15 3.17E−15 ± 1.50E−15 4.44E-16 ± 0.00E+00

F11 3.26E−05 ± 1.75E−04 0.00E+00 ± 0.00E+00 2.46E−09 ± 1.31E−08 0.00E+00 ± 0.00E+00

F12 1.57E−32 ± 4.63E−34 1.57E−32 ± 5.47E−48 1.57E−32 ± 5.47E−48 1.57E−32 ± 5.47E−48

F13 1.35E−32 ± 5.47E−48 1.35E−32 ± 5.47E−48 1.37E−32 ± 9.05E−34 1.35E−32 ± 5.47E−48

F14 1.48E−13 ± 2.78E−14 6.44E−14 ± 1.93E−14 1.50E−14 ± 3.11E−14 6.44E−14 ± 1.93E−14

F15 6.50E+03 ± 1.12E+03 2.63E+02 ± 1.32E+02 3.83E+03 ± 1.27E+03 2.94E+02 ± 1.11E+02

F16 9.54E+06 ± 2.46E+06 2.55E+06 ± 9.35E+05 8.26E+06 ± 1.48E+06 2.80E+06 ± 1.02E+06

F17 3.74E+04 ± 5.34E+03 4.76E+03 ± 1.04E+03 2.84E+04 ± 2.66E+03 7.38E+03 ± 1.46E+03

F18 9.22E+03 ± 1.04E+03 2.47E+03 ± 5.05E+02 9.05E+03 ± 1.09E+03 2.43E+03 ± 4.72E+02

F19 5.62E+01 ± 6.87E+01 6.98E+01 ± 9.13E+01 3.73E+01 ± 3.39E+01 3.64E+01 ± 4.94E+01

F20 1.59E−02 ± 7.76E−03 1.52E−02 ± 1.60E−02 1.45E−02 ± 9.83E−03 1.86E−02 ± 1.63E−02

F21 2.09E+01 ± 6.42E−02 2.09E+01 ± 5.68E−02 2.07E+01 ± 8.14E−02 2.09E+01 ± 8.62E−02

F22 6.46E−13 ± 1.52E−12 7.96E−14 ± 2.78E−14 2.54E−13 ± 3.29E−13 6.63E−14 ± 2.12E−14

F23 2.40E+02 ± 3.16E+01 1.18E+02 ± 2.20E+01 1.37E+02 ± 2.58E+01 1.28E+02 ± 1.77E+01

Rosenbrock problem (F05) and its shifted version (F19), it
is pointed out in Shang and Qiu (2006) that this problem is
multimodal when D > 3, and its global optimum is inside a
long narrow parabolic-shaped flat valley. A more explorative
algorithm, e.g., the basic ABC, usually performs better on
it. However, on the mutlimodal Rastrigin problem (F09), the
performance of ABC-BB is much better than that of ABC.
The overall performance of ABC-BB shows that the Gaussian
bare-bones search equation is more effective than the origi-
nal one. For ABC-GOBL, its performance is not worse than
that of ABC on any test function. Specifically, the results
of ABC-GOBL on F04, F07 and F11 are much better than
those of ABC. The comparison of ABC-GOBL with ABC
demonstrates that the modified scout bee phase can enhance
the performance of ABC. By combining these two modifi-
cations, GBABC obtains the best performance among the
involved four algorithms. Specifically, on F03, F04 and F10,
only one single modification can hardly achieve good per-
formance, but much improvement can be obtained by mak-
ing the two modifications work together. The experimental
results and comparisons verify that the new search equation
and the GOBL strategy indeed help ABC with them perform
better than ABC with either or neither one on most of the

Table 5 Average rankings of ABC, ABC-BB, ABC-GOBL and
GBABC, and the best value is shown in boldface

Algorithms Average rankings

ABC 3.26

ABC-BB 2.24

ABC-GOBL 2.65

GBABC 1.85

test functions. Furthermore, the Friedman test is conducted
to compare the above four algorithms at a statistical level,
and Table 5 shows their average rankings. As seen, the best
average ranking is achieved by GBABC, and the other three
algorithms can be sorted as follows: ABC-BB, ABC-GOBL
and ABC.

4.4 Comparison with other ABCs

This subsection presents a comparative study of GBABC
with GABC and GOABC at both D = 30 and 50. In addi-
tion, the basic ABC is also included as a baseline. GABC Zhu
and Kwong (2010) is a gbest-guided ABC variant, which
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Table 6 The results achieved by ABC, GABC, GOABC and GBABC at D = 30

Functions ABC GABC GOABC GBABC
Mean error ± std dev Mean error ± std dev Mean error ± std dev Mean error ± std dev

F01 5.01E−37 ± 1.11E−36† 1.69E−47 ± 1.60E−47† 1.00E−50 ± 2.12E−50‡ 2.63E−49 ± 5.27E−49

F02 1.01E−19 ± 5.54E−20† 1.26E−24 ± 7.72E−25† 4.28E−31 ± 4.53E−31† 2.53E−31 ± 2.69E−31

F03 6.21E+03 ± 1.06E+03† 1.03E+04 ± 3.21E+03† 3.95E+02 ± 7.98E+02† 4.48E+01 ± 7.18E+01

F04 2.58E+01 ± 6.91E+00† 1.96E+01 ± 4.54E+00† 1.38E+00 ± 4.43E−01† 1.39E−07 ± 1.88E−07

F05 6.44E−01 ± 7.06E−01‡ 2.30E+01 ± 2.83E+01≈ 2.87E+01 ± 1.78E−01≈ 3.63E+00 ± 3.40E+00

F06 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00

F07 2.91E−01 ± 8.41E−02† 7.32E−02 ± 1.91E−02† 2.04E−02 ± 1.23E−02† 9.82E−05 ± 7.06E−05

F08 3.82E−04 ± 1.20E−12≈ 3.82E−04 ± 3.27E−13≈ 5.00E+02 ± 3.60E+02† 3.82E−04 ± 4.54E−13

F09 4.75E−14 ± 2.12E−13† 0.00E+00 ± 0.00E+00≈ 9.47E−01 ± 3.20E+00† 0.00E+00 ± 0.00E+00

F10 6.01E−14 ± 1.02E−14† 4.07E−14 ± 4.03E−15† 4.14E−14 ± 1.18E−14† 4.44E−16 ± 0.00E+00

F11 3.26E−05 ± 1.75E−04† 1.85E−13 ± 9.78E−13† 4.76E−03 ± 8.80E−03† 0.00E+00 ± 0.00E+00

F12 1.57E−32 ± 4.63E−34≈ 1.57E−32 ± 4.63E−34≈ 2.52E−07 ± 7.95E−07† 1.57E−32 ± 5.47E−48

F13 1.35E−32 ± 5.47E−48≈ 1.35E−32 ± 5.47E−48≈ 6.44E−03 ± 1.41E−02† 1.35E−32 ± 5.47E−48

F14 1.48E−13 ± 2.78E−14† 1.04E−13 ± 2.12E−14† 1.01E−06 ± 3.23E−06† 6.44E−14 ± 1.93E−14

F15 6.50E+03 ± 1.12E+03† 1.07E+04 ± 2.35E+03† 3.86E+03 ± 4.65E+03† 2.94E+02 ± 1.11E+02

F16 9.54E+06 ± 2.46E+06† 1.46E+07 ± 4.67E+06† 6.95E+06 ± 3.54E+06† 2.80E+06 ± 1.02E+06

F17 3.74E+04 ± 5.34E+03† 3.71E+04 ± 6.44E+03† 3.55E+04 ± 8.12E+03† 7.38E+03 ± 1.46E+03

F18 9.22E+03 ± 1.04E+03† 7.14E+03 ± 9.41E+02† 1.03E+04 ± 2.12E+03† 2.43E+03 ± 4.72E+02

F19 5.62E+01 ± 6.87E+01≈ 2.10E+01 ± 2.84E+01≈ 1.56E+03 ± 6.02E+03† 3.64E+01 ± 4.94E+01

F20 1.59E−02 ± 7.76E−03≈ 5.99E−02 ± 4.73E−02† 1.37E+00 ± 2.80E−01† 1.86E−02 ± 1.63E−02

F21 2.09E+01 ± 6.42E−02≈ 2.09E+01 ± 4.90E−02≈ 2.05E+01 ± 1.67E−01‡ 2.09E+01 ± 8.62E−02

F22 6.46E−13 ± 1.52E−12† 9.85E−14 ± 2.51E−14† 5.98E−01 ± 9.57E−01† 6.63E−14 ± 2.12E−14

F23 2.40E+02 ± 3.16E+01† 1.51E+02 ± 4.16E+01† 3.00E+02 ± 5.30E+01† 1.28E+02 ± 1.77E+01

w/ l/t 15/1/7 15/0/8 19/2/2 –

incorporates the information of global best solution into
the solution search equation to improve the exploitation of
ABC. The reported experimental results show that GABC
is very promising. GOABC (El-Abd 2012) is a generalized
opposition-based ABC variant, which also uses the GOBL
strategy. Similar to other opposition-based algorithms such
as ODE (Rahnamayan et al. 2008) and GOPSO (Wang et al.
2011), in GOABC the GOBL is considered as an independent
unit and used to generate opposite solutions of the whole pop-
ulation. However, differs from GOABC, our approach only
uses the GOBL in the scout bee phase for the discarded food
sources.

For a fair comparison, the same settings of common para-
meters are used for the above competitive algorithms, i.e.,
SN = 30, limit = 100, Max F Es = 5000 · D for F01–
F13 and Max F Es = 10,000 · D for F14–F23. For other
specific parameters, C = 1.5 for GABC, and J R = 0.3
for GOABC, which are the same as in the original litera-
tures. Each algorithm is run 30 times per function, and the
mean error and standard deviation values are presented in
Tables 6 and 7 for D = 30 and 50, respectively. Moreover, to

compare the significance between two algorithms, the paired
Wilcoxon signed-rank test is used. The Wilcoxon signed-
rank test is a non-parametric statistical hypothesis test, which
can be used as an alternative to the paired t test when the
results cannot be assumed to be normally distributed (García
et al. 2009, 2010). “†”, “‡” and “≈” indicate our approach
is, respectively, better than, worse than, and similar to that
of its competitor according to the Wilcoxon signed-ranked
test at α = 0.05. The competition results are summarized as
“w/ l/t ”, which denotes that our approach wins on w func-
tions, loses on l functions, and ties on t functions, compared
with its competitor.

For D = 30, from the results presented in Table 6, it
is clear that GBABC performs significantly better than the
other three algorithms on the majority of test functions. To be
specific, GBABC outperforms ABC on 15 out of 23 test func-
tions, while ABC only achieves better result on the Rosen-
brock problem (F05). On this problem, ABC is the winner
among the four algorithms. For GABC, it seems not to be
better than GBABC on any test function. Note that on the
Rastrigin problem (F09), both GABC and GBABC achieve
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Table 7 The results achieved by ABC, GABC, GOABC and GBABC at D = 50

Functions ABC GABC GOABC GBABC
Mean error ± std dev Mean error ± std dev Mean error ± std dev Mean error ± std dev

F01 2.90E−36 ± 2.86E−36† 1.14E−45 ± 2.18E−45‡ 1.80E−52 ± 4.33E−52‡ 1.15E−40 ± 1.33E−40

F02 2.37E−19 ± 1.28E−19† 1.72E−23 ± 6.70E−24† 1.15E−32 ± 1.94E−32‡ 9.97E−29 ± 5.88E−29

F03 2.11E+04 ± 1.77E+03† 3.00E+04 ± 4.32E+03† 9.40E+02 ± 2.81E+03≈ 5.94E+01 ± 6.19E+01

F04 5.77E+01 ± 3.32E+00† 5.11E+01 ± 4.20E+00† 5.83E+00 ± 8.16E−01† 2.46E−11 ± 3.51E−11

F05 7.16E−01 ± 9.67E−01‡ 4.53E+01 ± 4.42E+01≈ 4.86E+01 ± 1.91E−01≈ 4.92E+01 ± 1.86E+01

F06 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00

F07 4.68E−01 ± 7.04E−02† 2.29E−01 ± 3.68E−02† 1.23E−02 ± 7.86E−03† 9.08E−05 ± 7.19E−05

F08 6.36E−04 ± 2.49E−09≈ 6.36E−04 ± 2.54E−12≈ 6.12E+02 ± 2.63E+02† 6.36E−04 ± 6.73E−06

F09 6.61E−11 ± 2.53E−10† 0.00E+00 ± 0.00E+00≈ 2.91E−03 ± 1.57E−02† 0.00E+00 ± 0.00E+00

F10 1.22E−13 ± 2.11E−14† 8.27E−14 ± 8.11E−15† 8.00E−14 ± 1.77E−14v 4.44E−16 ± 0.00E+00

F11 4.18E−09 ± 2.02E−08† 6.84E−15 ± 3.46E−14† 3.53E−03 ± 7.98E−03† 0.00E+00 ± 0.00E+00

F12 1.14E−32 ± 2.15E−33† 9.42E−33 ± 2.74E−48≈ 3.36E−07 ± 9.53E−07† 9.42E−33 ± 2.74E−48

F13 1.58E−32 ± 2.88E−33† 1.35E−32 ± 5.47E−48≈ 1.05E−02 ± 2.26E−02† 1.35E−32 ± 2.21E−34

F14 2.77E−13 ± 3.81E−14† 2.54E−13 ± 2.84E−14† 2.96E−06 ± 1.13E−05† 1.35E−13 ± 2.74E−14

F15 4.74E+04 ± 8.30E+03† 3.44E+04 ± 7.35E+03† 1.49E+04 ± 9.19E+03† 5.61E+03 ± 1.01E+03

F16 4.30E+07 ± 9.96E+06† 3.04E+07 ± 8.24E+06† 9.20E+06 ± 3.46E+06† 7.11Ev06 ± 2.68E+06

F17 1.01E+05 ± 1.12E+04† 1.03E+05 ± 9.32E+03† 8.99E+04 ± 1.68E+04† 3.33E+04 ± 3.56E+03

F18 1.99E+04 ± 1.58E+03† 2.01E+04 ± 1.66E+03† 2.05E+04 ± 1.81E+03† 5.47E+03 ± 7.62E+02

F19 1.21E+02 ± 5.32E+01† 3.76E+01 ± 3.89E+01≈ 6.31E+02 ± 1.38E+03† 7.17E+01 ± 7.63E+01

F20 1.58E−01 ± 8.04E−02† 4.32E−02 ± 3.08E−02† 2.18E+00 ± 5.86E−01† 1.39E−02 ± 1.39E−02

F21 2.11E+01 ± 4.02E−02† 2.11E+01 ± 3.56E−02† 2.05E+01 ± 1.51E−01‡ 2.10E+01 ± 8.13E−02

F22 2.56E−13 ± 8.53E−14† 2.43E−13 ± 5.07E−14† 2.65E−01 ± 7.37E−01† 1.63E−13 ± 2.84E−14

F23 3.95E+02 ± 5.49E+01† 4.04E+02 ± 7.89E+01† 7.26E+02 ± 8.32E+01† 1.61E+02 ± 1.52E+01

w/ l/t 20/1/2 16/1/6 17/3/3 –

Table 8 Average rankings of ABC, GABC, GOABC and GBABC at
both D = 30 and D = 50, and the best value is shown in boldface

Algorithms Average rankings

D = 30 D = 50

ABC 2.93 3.07

GABC 2.50 2.46

GOABC 2.98 2.89

GBABC 1.59 1.58

Table 9 Parameter settings for ODE, GOPSO, modified BBPSO and
MGBDE

Algorithms Parameter settings

ODE N P = 100, F = 0.5, C R = 0.9, J R = 0.3

GOPSO N P = 40, ω = 0.729, c1 = c2 = 1.496, J R = 0.3

modified BBPSO N P = 50

MGBDE N P = 100, F = 0.5, C R = 0.9

the global optimum which are much better than other two
algorithms. Although GOABC wins GBABC on three test
functions, GBABC beats it on the other 19 test functions,

especially on the multimodal functions. For D = 50, with
respect to the four algorithms, although their overall per-
formance deteriorates with the growth of the dimensionality
of the problem, GBABC consistently gets significantly bet-
ter results than its competitors. Specifically, compared with
ABC, our approach wins on from 15 test functions at D = 30
to 20 test functions at D = 50. The Friedman test is also
conducted to obtain the average rankings for both D = 30
and 50, and Table 8 gives the final results. As seen, GBABC
achieves the best average ranking. It means that GBABC is
the best one among the four algorithms.1

4.5 Comparison with some related EAs

To further investigate the performance of GBABC, in this
subsection, we compare GBABC with four related EAs,
including two DE variants and two PSO variants which are
listed as follows:

• opposition-based DE (ODE) (Rahnamayan et al. 2008);
• generalized opposition-based PSO (GOPSO) (Wang et

al. 2011);
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Table 10 The results achieved by ODE, GOPSO, modified BBPSO, MGBDE and GBABC at D = 30

Func. ODE GOPSO Modified BBPSO MGBDE GBABC
Mean error ± std dev Mean error ± std dev Mean error ± std dev Mean error ± std dev Mean error ± std dev

F01 2.40E−11 ± 1.28E−10† 2.49E−44 ± 1.27E−43† 3.09E−48 ± 8.93E−48† 5.73E−38 ± 1.81E−37† 2.63E−49 ± 5.27E−49

F02 3.93E−11 ± 1.49E−10† 1.08E−20 ± 3.10E−20† 1.13E−32 ± 1.28E−32‡ 6.25E−23 ± 1.45E−22† 2.53E−31 ± 2.69E−31

F03 1.42E−01 ± 3.39E−01‡ 3.62E+03 ± 1.60E+03† 6.98E−01 ± 6.09E−01‡ 1.60E+02 ± 9.00E+01† 4.48E+01 ± 7.18E+01

F04 6.19E+00 ± 1.88E+00† 7.20E−03 ± 6.89E−03† 4.26E−04 ± 4.22E−04† 4.95E−04 ± 5.14E−04† 1.39E−07 ± 1.88E−07

F05 6.51E+01 ± 4.36E+01† 2.42E+01 ± 1.33E+00≈ 3.80E+01 ± 2.90E+01≈ 2.52E+01 ± 1.78E+01≈ 3.63E+00 ± 3.40E+00

F06 1.23E+02 ± 1.12E+02† 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00

F07 2.78E−02 ± 2.23E−02† 7.81E−03 ± 3.94E−03† 5.72E−03 ± 1.65E−03† 4.79E−03 ± 1.80E−03† 9.82E−05 ± 7.06E−05

F08 4.36E+03 ± 1.68E+03† 8.68E+03 ± 4.16E+02† 9.82E+02 ± 2.96E+02† 5.42E+02 ± 2.02E+02† 3.82E−04 ± 4.54E−13

F09 3.95E+01 ± 2.49E+01† 1.69E+02 ± 3.92E+01† 1.82E+01 ± 5.42E+00† 5.57E+00 ± 2.58E+00† 0.00E+00 ± 0.00E+00

F10 1.08E+00 ± 9.51E−01† 1.55E−14 ± 4.27E−15† 8.50E−15 ± 2.42E−15† 7.31E−15 ± 8.86E−16v 4.44E−16 ± 0.00E+00

F11 1.09E−01 ± 3.68E−01† 6.57E−03 ± 8.15E−03† 3.04E−03 ± 5.07E−03† 5.75E−04 ± 2.18E−03† 0.00E+00 ± 0.00E+00

F12 7.95E−02 ± 1.22E−01† 3.46E−03 ± 1.86E−02† 3.46E−03 ± 1.86E−02† 1.57E−32 ± 5.47E−48≈ 1.57E−32 ± 5.47E−48

F13 6.43E−01 ± 2.19E+00† 1.46E−03 ± 3.73E−03≈ 1.10E−03 ± 3.30E−03† 1.35E−32 ± 5.47E−48v 1.35E−32 ± 5.47E−48

F14 6.54E−04 ± 3.52E−03† 7.58E−14 ± 3.06E−14† 5.68E−14 ± 0.00E+00‡ 4.93E−14 ± 1.93E−14‡ 6.44E−14 ± 1.93E−14

F15 1.64E−01 ± 7.22E−01‡ 3.12E+03 ± 2.94E+03† 4.28E−04 ± 1.20E−03‡ 5.29E+00 ± 5.69E+00‡ 2.94E+02 ± 1.11E+02

F16 6.59E+05 ± 2.48E+05‡ 2.00E+07 ± 1.79E+07† 1.68E+06 ± 7.77E+05≈ 6.79E+06 ± 3.16E+06† 2.80E+06 ± 1.02E+06

F17 2.75E+00 ± 6.02E+00‡ 6.43E+03 ± 2.61E+03‡ 1.30E+02 ± 8.13E+01‡ 1.24E+02 ± 7.71E+01‡ 7.38E+03 ± 1.46E+03

F18 2.77E+03 ± 6.33E+02† 9.24E+03 ± 1.76E+03† 3.69E+03 ± 8.96E+02† 2.04E+03 ± 4.69E+02≈ 2.43E+03 ± 4.72E+02

F19 7.03E+05 ± 1.94E+06† 4.77E+01 ± 6.48E+01† 8.02E+01 ± 8.17E+01† 2.98E+01 ± 2.67E+01‡ 3.64E+01 ± 4.94E+01

F20 2.20E−02 ± 1.64E−02† 2.62E+00 ± 7.04E+00† 1.33E−02 ± 9.53E−03≈ 1.14E−02 ± 1.25E−02≈ 1.86E−02 ± 1.63E−02

F21 2.09E+01 ± 5.82E−02≈ 2.09E+01 ± 8.89E−02≈ 2.10E+01 ± 4.06E−02† 2.09E+01 ± 5.54E−02≈ 2.09E+01 ± 8.62E−02

F22 3.14E+01 ± 1.25E+01† 7.13E+01 ± 5.39E+01† 2.00E+01 ± 5.01E+00† 5.94E+00 ± 2.84E+00† 6.63E−14 ± 2.12E−14

F23 5.92E+01 ± 2.62E+01‡ 2.18E+02 ± 1.66E+01† 7.67E+01 ± 3.91E+01‡ 1.62E+02 ± 2.14E+01† 1.28E+02 ± 1.77E+01

w/ l/t 17/5/1 18/1/4 13/6/4 12/4/7 –

Table 11 Average rankings of ODE, GOPSO, modified BBPSO,
MGBDE and GBABC at D = 30, and the best value is shown in
boldface

Algorithms Average rankings

ODE 3.80

GOPSO 4.07

modified BBPSO 2.70

MGBDE 2.35

GBABC 2.09

• modified bare-bones PSO (modified BBPSO) (Kennedy
2003);

• modified Gaussian bare-bones DE (MGBDE) (Wang et
al. 2013).

Both ODE and GOPSO use the (generalized) opposition-
based learning strategy, while modified BBPSO and MGBDE
use the bare-bones technique. For a fair comparison, the
control parameters of these competitive EAs are set to the

suggested values offered by their corresponding literatures.
Table 9 shows the control parameter settings in detail. The
stopping criterion is the same as previous subsections. Each
algorithm is run 30 times per function, and the mean error
and standard deviation values are given in Table 10.

With respect to the overall performance, from Table 10,
we can see that GBABC obtains significantly better results on
the majority of test functions compared with its competitors.
To be specific, ODE wins on 5 test functions compared with
GBABC, but on other 17 test functions GBABC performs
better. Note that ODE performs the best on the test func-
tions F16 and F17 among the five algorithms. The reasons
may be twofold: first, ODE employs the classic “DE/rand/1”
mutation scheme, which has no bias to any special search
direction and can choose new search directions in a ran-
dom manner. Therefore, it is sufficient to search the complex
shifted and rotated fitness landscape. Second, the OBL strat-
egy employed by ODE can provide more chances of finding
the global optimum, which implies that more regions can
be searched by ODE. For GOPSO, it outperforms GBABC
on only one test function. Modified BBPSO performs better
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than GBABC on six test functions, while GBABC outper-
forms it on other 13 test functions. It is impressive that mod-
ified BBPSO achieves the best results on the unimodal test
function F02 (Schwefel 2.22 problem) compared with other
four algorithms. The possible reason is that modified BBPSO
provides the new candidate solution a 50 % chance to inherit
the elements from its personal best position, and thus it also
has good exploitation capability. Compared with MGBDE,
GBABC wins on 12 test functions and loses on other 4 ones.

Table 11 shows the average rankings of the five algorithms
based on Friedman test. As seen, GBABC achieves the best
average ranking. The remaining algorithms can be sorted by
their average rankings into the following order: MGBDE,
modified BBPSO, ODE and GOPSO.

4.6 Comparison with some state-of-the-art EAs

In this subsection, the proposed GBABC is further com-
pared with some state-of-the-art EAs which include dif-
ferent DE, PSO and ABC variants, they are: (1) basic DE
(Storn and Price 1997), self-adapting control parameters DE
(jDE) (Brest et al. 2006), adaptive DE with optional external
archive (JADE) (Zhang and Sanderson 2009), DE with strat-
egy adaptation (SaDE) (Qin et al. 2009); (2) fully informed
PSO (FIPS) (Mendes et al. 2004), self-organizing hierarchi-
cal PSO with time-varying acceleration coefficients (HPSO-
TVAC) (Ratnaweera et al. 2004), comprehensive learning
PSO (CLPSO) (Liang et al. 2006) and orthogonal learn-
ing PSO (OLPSO) (Zhan et al. 2011); (3) memetic ABC
(MeABC) (Bansal et al. 2013) and opposition-based lévy
flight ABC (OBLFABC) (Sharma et al. 2013). Table 12
presents the comparison between GBABC and DEs on opti-
mizing 30-dimensional functions. All the results of these DEs
are based on the reports in the literatures (Zhang and Sander-
son 2009; Gong et al. 2011). From the results, we can see that
GBABC performs the best on the majority of test functions.
Specifically, basic DE seems not to be better than GBABC
on any function. Both jDE and SaDE only win GBABC on
one function, while GBABC beats them on the remaining
12 functions. Compared with JADE, GBABC does better on
11 functions. The compared results of GBABC and PSOs
are reported in Table 13. The results of PSOs are all directly
derivated from the literature (Zhan et al. 2011), and the sug-
gested stopping criterion Max F Es equals to 200,000. As
seen, for FIPS, HPSO-TVAC and OLPSO, none of them
seems to perform better than GBABC on any used test func-
tion. GBABC works better than CLPSO on 10 out of 12
functions except on Schwefel 2.26 and Shifted Rastrigin on
which both two algorithms have the same performance. Table
14 presents the comparison among MeABC, OBLFABC, and
GBABC on optimizing 30-dimensional functions. The stop-
ping criteria for these three algorithms are either maximum
number of function evaluations (which is set to be 200,000)

is reached or the acceptable error (mentioned in Table 14) has
been achieved. The number of run is 100. All the results of
MeABC and OBLFABC are based on the reports in the liter-
ature (Bansal et al. 2013). The success rate (SR) and average
number of function evaluations (AFE) are also reported in the
Table 14. From this table, we can see that GBABC outper-
forms MeABC and OBLFABC both on 4 out of 5 test func-
tions, while MeABC and OBLFABC achieve better results
on the Shifted Rosenbrock problem. As for the SR, however,
all the three algorithms fail to get satisfied results on the
Shifted schwefel problem. In short, the whole comparisons
demonstrates that GBABC shows superior performance in
terms of the quality of the final solutions.

4.7 Application to a real-world optimization problem

In this section, we further investigate the performance of
our approach over a real-world problem, i.e., the frequency
modulated (FM) sound wave synthesis problem (Das and
Suganthan 2010; Bansal et al. 2013). The FM sound wave
synthesis plays an important role in several modern music
systems. It provides a simple and efficient method creating
complex sound timbres. The parameter optimization of a FM
synthesizer is a six-dimensional optimization problem where
the vector to be optimized is X = {a1, w1, a2, w2, a3, w3} of
the sound wave given in Eq. (13). The problem is to generate
a sound [generated by Eq. (13)] similar to the object sound
[generated by Eq. (14)]. The formulas for the estimated sound
wave and the target sound are given as follows:

y(t) = a1 sin(w1tθ + a2 sin(w2tθ)+ a3 sin(w3tθ))) (13)

y0(t) = 1.0 sin(0.5tθ + 1.5 sin(4.8tθ)+ 2.0 sin(4.9tθ)))

(14)

where θ = 2π/100 and Xi ∈ [−6.4, 6.35].
The goal of this problem is to minimize the sum of squared

errors between the estimated sound and the target sound, as
given by Eq. (15). This problem is a highly complex mul-
timodal one having strong epistasis, with minimum value
f (X) = 0. f (X) can be expressed as follows:

f (x) =
100∑

t=0

(y(t)− y0(t))
2 (15)

In this experiment, the basic ABC, GABC, GOABC and
GBABC are applied to solve this problem. The parameter
settings for all these four algorithms are kept the same as
described in Sect. 4.4. The stopping criterion MaxFEs is set
to 200,000. Each algorithm is run 30 times, and the mean
and standard deviation values are reported in Table 15. From
the results, it is clear that GBABC performs better than other
three algorithms in terms of the quality of the final solutions.
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Table 14 Comparison among MeABC, OBLFABC, and GBABC on optimizing 30-dimensional problems

Functions Acceptable error Measure MeABC OBLFABC GBABC

Quartic 1.00E+00 Mean error 9.20E+00 9.59E+00 9.00E−01

Std dev 4.02E−01 5.14E−01 7.41E−02

AFE 200,017.89 200,030.13 2,740

SR 0 0 100

Shifted Rosenbrock 1.00E−01 Mean error 1.03E−01 6.40E−01 3.91E+02

Std dev 7.83E−02 2.87E+00 1.92E+00

AFE 103,949.03 62,464.38 200,000

SR 97 88 0

Shifted sphere 1.00E−05 Mean error 7.86E−06 7.72E−06 5.11E−06

Std dev 1.92E−06 2.29E−06 9.28E−07

AFE 5,535.34 6,718.35 4,300

SR 100 100 100

Shifted Rastrigin 1.00E−02 Mean error 8.23E+01 9.01E+01 7.10E−03

Std dev 1.24E+01 1.16E+01 2.84E−03

AFE 200,012.07 200,031 70,200

SR 0 0 100

Shifted schwefel 1.00E−05 Mean error 1.05E+04 1.12E+04 1.32E+03

Std dev 3.33E+03 3.07E+03 5.76E+02

AFE 200,025.38 200,032.45 200,000

SR 0 0 0

Table 15 The results of ABC, GABC, GOABC and GBABC on the FM
sound wave synthesis problem, and the best value is shown in boldface

Algorithms Mean Std dev

ABC 4.30E+00 4.41E+00

GABC 3.45E+00 4.98E+00

GOABC 1.26E+01 5.36E+00

GBABC 2.01E+00 3.47E+00

This paper only presents a comparative study on the FM
sound wave synthesis problem. More applications to real-
world problems will be investigated in the future work (Das
and Suganthan 2010; Sharma et al. 2012; Bansal et al. 2013).

5 Conclusions

This paper presents a Gaussian bare-bones ABC (GBABC)
algorithm, which aims to improve the exploitation of ABC.
In GBABC, the solution search equation of onlooker bees
is replaced with a new one—Gaussian bare-bones search
equation. The Gaussian bare-bones search equation uses a
Gaussian distribution to sample the search space between
the current solution and the global best solution of cur-
rent population. During the evolution of the algorithm, the
search behavior of this new search equation gradually varies

from exploration to exploitation. It is beneficial to balance
the exploitation and exploration capabilities. Furthermore, to
preserve the search experiences of the scout bees, the GOBL
strategy is employed to generate opposite solutions of the dis-
carded food sources in the scout bee phase. A comprehensive
set of experiments is conducted on 23 benchmark functions
and a real-world optimization problem to verify the perfor-
mance of our approach, and some other well-known ABCs
and state-of-the-art EAs are used for comparision. The exper-
imental results demonstrate that our approach achieves better
performance in term of solution accuracy and convergence
speed.
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