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Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance
(MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and mon-
itoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation
based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image
sequences.
Methods: The proposed Inter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm
relies on interslice image registration of volume data to segment the prostate gland without the use of
an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., the
first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment
the remaining slices. We conducted comprehensive experiments to measure the performance of the
proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques).
Results: The results with the proposed technique were compared with manual marking using prostate
MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117
patients. The median accuracies for individual slices measured using the Dice similarity coefficient
(DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evalu-
ated regarding user variability, which confirmed that the algorithm was robust to interuser variability
when marking the prostate gland.
Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a vol-
ume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational
cost while producing highly accurate results which are robust to interuser variability. © 2013 Ameri-
can Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4829511]

Key words: image registration, prostate segmentation, magnetic resonance imaging, computed to-
mography imaging, prostate volume

1. INTRODUCTION

Prostate cancer is the most common cancer in men. For exam-
ple, one in six men in Canada is diagnosed with prostate can-
cer during their lifetime.1 However, it is a slow-growing type
of cancer and, in most cases, its diagnosis usually leads to ac-
tive monitoring of tumor growth for a long period of time. An
important part of monitoring prostate cancer is prostate gland
volume estimation, which plays a significant role in decid-
ing the next step, i.e., active surveillance, surgery/radiation
treatment, or an assessment of the applicability or safety of
brachytherapy (i.e., large prostate glands can be difficult or
impossible to implant, which leads to increased toxicity). Cur-
rently, CT images are generally used for radiation therapy
planning because density information is essential for accu-

rately calculating the beam intensities. In many cases, how-
ever, MR images are also used for accurate image segmenta-
tion because, from the expert user’s perspective, MR images
contain detailed information of the organs and/or tumors un-
der study. In such cases, it is generally necessary to register
MR images with CT scans to produce the markings required
for planning.

Recent research has delivered promising results where MR
images can be used as an alternative to the more widely used
CT scans. MR imaging is a safer and less invasive method
compared with CT scans. The use of MRI could also poten-
tially reduce inter-observer variability. Even in cases where
the treatment planning has been decided, MR imaging has
begun to gain momentum because of its soft-tissue contrast
and high spatial resolution.2–4 Recent studies show that MR
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images can be used for dose calculation in cancer treatment,
which might lead to the complete elimination of the require-
ment for CT.5 In all cases of diagnosis, treatment, and moni-
toring of prostate cancer, accurate localization and segmenta-
tion of the prostate gland in images is required.

MR (or CT) volume datasets (“Volume dataset” refers to
image sequences of a volumetric object such as a prostate
gland, which are captured during a single scan.) are captured
to estimate the volume of the prostate gland. Each slice of
the volume dataset has to be marked (We refer to the man-
ual and automatic marking of an object in images as “con-
touring” and “autosegmenting/segmenting”, respectively.) so
the boundary of the prostate gland can be labeled. Currently,
this is performed manually by clinical experts (e.g., radiolo-
gists and oncologists) and contouring of a patient’s volume
dataset can take several minutes. For example, manual con-
touring of the prostate in a MR image series containing 15
slices could take around 15 min, depending on the expertise
and working speed of the clinician. Given a large number of
prostate cancer cases (considering the effect of an aging pop-
ulation), the long time required to process the volume dataset
imposes a serious burden on the healthcare system and pre-
vents timely patient access to proper care. The availability
of a computer-assisted segmentation method could reduce the
time spent manually contouring the prostate during this high-
demand everyday task in hospitals.

Atlas-based segmentation (ABS) is a well-established and
widely used technique for extracting contours from medical
images. In this method, the processed images are stored in
a database known as an atlas, along with their optimal seg-
mentation results. A target image is usually registered and
compared with the atlas, and the result of the best match is
selected as the segmentation result, which is then deformed
using the registration transformation. Proposed ABS methods
have been partially successful at segmenting medical images,
but they have major shortcomings that limit the efficiency of
the technique. First, the accuracy of the results depends on the
diversity of the atlas or the atlas selection. It is virtually im-
possible to produce an atlas that is sufficiently diverse by care-
ful atlas selection so it will provide good results for all unseen
images. Therefore, a practical solution is to make the atlas as
large as possible so there is a higher chance that the target
image matches one in the atlas. However, even large atlases
cannot guarantee a reasonable result for any target image. It
is always possible that the target image will not match any
image in the atlas, which leads to poor results. Second, ABS
algorithms are based on multiple image registrations. Image
registration is a computationally demanding algorithm and the
ABS requirement for multiple registrations makes it compu-
tationally expensive. Third, an atlas created from the images
of a particular scanner can usually only be used to segment
images from the same scanner due to the fact that different
scanners produce images with different characteristics. This
is yet another limitation for ABS algorithms where the atlas
and target images must be of the same scanner and/or imaging
protocol in order to achieve highly accurate results.

The aim of the current study was to develop an algorithm
that exploits interslice redundancy to segment the prostate

gland in MR and CT images without any need for an atlas.
Our algorithm benefits from the interslice data redundancy of
images in a volume dataset so a given label (We refer to the
result of contouring or autosegmentation of an image as a “la-
bel”.) can be propagated to the neighboring slices using im-
age registration. This eliminates the need for an atlas, which
removes the burden of creating an appropriate atlas.

We evaluated the performance of our proposed algorithm
using the volume datasets from 100 patients MR images
(“One patient image” refers to a volume dataset captured dur-
ing a single scan.) and 17 volume datasets of CT images,
which were manually contoured by an expert user. A com-
parison of the unedited segmentation results using our al-
gorithm with manually contoured images demonstrated their
high accuracy for volume estimation and the marking of in-
dividual slices of prostate gland in MR and CT images. The
fact that the iBRS algorithm produced highly accurate results
for both MR and CT images indicate that our proposed algo-
rithm is modality independent, so it is applicable to MR and
CT. We also evaluated the robustness of our proposed algo-
rithm with regard to user variability in contouring MR images
by comparing the performance of the algorithm with contour-
ing by five different expert users with the volume datasets
for 15 patients (different than the original MRI data from
100 patients).

The outline of the remainder of this paper is as follows. In
Sec. 2, the related work on the segmentation of prostate im-
ages is presented. Section 3 presents a brief background re-
view of different image registration techniques. In Sec. 4, we
present our proposed algorithm for semiautomatic segmenta-
tion of prostate gland in MR and CT images. Sections 5 and 6
present the performance results and the discussion for the pro-
posed algorithm, respectively. Finally, Sec. 7 concludes the
paper.

2. RELATED WORK

Several methods, which are based on manually contoured
images and estimated measurements of the prostate, have
been proposed for estimating the prostate volume by mod-
eling the prostate as a simple geometric shape. The ellipsoid
model is one of the most popular models for estimating the
prostate volume.6–8 The main drawback of the ellipsoid model
is that it sometimes underestimates the prostate volume.8

Active shape models (ASMs) have been proposed for
the automatic segmentation and recognition of biomedical
organs.9 The general concept of ASMs is that a shape model is
constructed based on the principal component analysis (PCA)
of several landmark points, which are determined manually
using a set of training images.10 ASMs have been widely used
for the segmentation of prostate glands, mostly in ultrasound
images.11–14 Recently, Toth et al.15 proposed a method for
estimating the prostate volume in MR images using ASMs.
Their method involved training an ASM with a set of training
images based on multiple features. They also compared their
results with other models and showed that their method per-
formed better than the ellipsoid model when estimating the
prostate volume.
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Another popular approach for prostate segmentation is
atlas-based segmentation (ABS).16–20 Briefly, this method in-
volves contouring the desired anatomy (i.e., prostate) by an
expert user and storing the original images with the corre-
sponding labels (i.e., segmented binary image) in a database
known as an “atlas.” To segment the prostate in a target im-
age, all of the images in the atlas are registered to the target
image using an image registration method. The registered im-
ages in the atlas are then compared to the target image using
an image similarity matching technique to find the most simi-
lar registered image in the atlas. Finally, a segmented image is
produced by applying an image transformation function to the
segmented binary image (label) that corresponds to the most
similar image in the atlas. Among the prostate registration al-
gorithms in the literature, the ABS methods are the most rel-
evant methods to our proposed iBRS algorithm because both
methods heavily rely on image registration. Therefore, as re-
lated work, we focus on ABS algorithms for which different
variations have been proposed to increase the accuracy of the
results and/or reduce the computational cost.

Klein et al.18 presented a semiautomatic algorithm based
on atlas matching for the segmentation of the prostate gland
in MR images. The algorithm used an affine registration fol-
lowed by a nonrigid registration method to register all of the
images in the atlas with the target image. The registered im-
ages were compared to the target image using mutual infor-
mation as the similarity measure to select a set of the most
similar registered images. For each selected registered im-
age, the corresponding image transformation was applied to
the original segmented image (or label) to produce the regis-
tered label. The generated labels were then averaged together
and thresholded at 50% to generate the final label. The re-
gions of interest (ROIs) that needed to be segmented in the
atlas and the images were selected manually. The atlas and
test data comprised 14 and 22 images, respectively. A median
Dice similarity coefficient (DSC) of 82% was reported but the
processing time was not mentioned.

In another study, Klein et al.17 presented an improved ver-
sion of their previous method.18 The first stage of this algo-
rithm (atlas selection) was similar to the previous method18

which produced a set of registered labels. The registered
labels were then fused using two methods: majority vot-
ing and simultaneous truth and performance level estima-
tion (STAPLE).21 The registered labels were fed to these two
methods to generate a consensus label. Next, the registered
labels were compared with the consensus and the least sim-
ilar labels were discarded, whereas the remainder were used
to create a new consensus label. This process required several
iterations until the remaining labels were similar to their con-
sensus labels. The final consensus label was considered to be
the final result for a given image. The ROIs that needed to be
segmented in the atlas and the images were selected manu-
ally. Two experiments were conducted. The atlas and test data
used in experiments 1 and 2 comprised 38 and 50 scans, and
50 and 50 scans, respectively. Using the best settings for the
atlas selection, similarity measure, and label fusion, a median
DSC of 88% was reported. The processing time per registra-
tion was 15 min on a single Pentium 2.4 GHz processor.

Dowling et al.19 proposed a segmentation method based on
probabilistic atlases that used a nonrigid registration method.
In this method, a volume dataset (scan) was selected as the
initial atlas. The remaining volume datasets with labels were
registered twice against the initial atlas. First, using rigid and
affine transformations and then using rigid, affine, and non-
rigid transformations. A new atlas was generated at the end
of each step by averaging the registered images. The regis-
tered labels were also averaged to produce a probability map
of the prostate. To segment a target image, the average atlas
was registered against it using affine and nonrigid registration
methods. The transformation was then applied to the proba-
bility map of the prostate and the result was thresholded to
generate the result label. The atlas and test data for the exper-
iments comprised 15 and one scans, respectively. A median
DSC of 78% was reported for the cases that did not fail com-
pletely. The processing time was 60 min for the test scan on a
dual core Intel 3 GHz processor.

Langerak et al.20 proposed a multiatlas-based segmenta-
tion method for prostate MR images based on an iterative la-
bel fusion approach, which was somewhat similar to the algo-
rithm proposed in Ref. 17. First, all of the atlas images were
registered (affine followed by nonrigid) against the target im-
age to obtain a set of registered labels. The segmentation per-
formance was estimated based on normalized mutual infor-
mation and the registered labels were then fused together us-
ing a weighted majority voting method. Next, the overlap of
each contour was calculated against the fused label. Labels
with low overlaps were dropped and the fused labels were
recalculated. The atlas and test data used in the experiments
both comprised 99 images. An average DSC of 87.5% was
reported. The processing time was 8 min and 23 s per image
for postregistration only on a 2.66 GHz dual processor.

Martin et al.16 proposed a probabilistic atlas-based seg-
mentation method for prostate MR images. The atlas was cre-
ated by registering (affine followed by nonrigid) images with
a manually picked reference image. Next, a mean image was
created by averaging all of the registered images. Each image
was registered against the mean image to produce a deformed
label of the image. The deformed labels were then averaged
to generate a probability map of the labels. To segment an im-
age, the mean image was registered to it and the probability
map of the labels was deformed using the registration trans-
form. The result label was modified using a deformable model
to better match the prostate boundaries. The atlas and test data
used in the experiments both comprised 36 scans. A median
DSC of 87% was reported. The processing time was 4 min
on a dual core 1.6 GHz processor because the algorithm only
required one registration per image.

The proposed atlas-based segmentation techniques all pro-
vide reasonable results (DSCs of up to 88%). A drawback is
the atlas generation process where a clinician (e.g., a radiation
oncologist) must contour several images manually to create a
database of images and their corresponding labels. This is a
time-consuming task and it might not always be possible to
have a preprocessed dataset. A second drawback is the com-
putational time required to process the proposed algorithms.
In most cases, the algorithm requires that all images in the
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atlas must be registered against the target image. Registration
is an intensive task and registering multiple images is pro-
hibitively expensive (e.g., 15 min per registration in Ref. 17).
The algorithm proposed in Ref. 16 reduced the computational
time drastically by creating a mean image that was used to
register the target image, but it still required postprocessing
to deform the registered label appropriately. The reported time
was significantly less than the other proposed algorithms (i.e.,
4 min).

Instead of using a pregenerated atlas, our proposed algo-
rithm uses the three initial labels generated by the user before
producing the labels of the remaining images in the volume
dataset. Our results show that using expert knowledge to ini-
tialize three labels (apex, base, and middle slice) leads to a
high accuracy (above 88% DSC) without using an atlas and
in a much shorter time (i.e., 13 s per volume dataset) com-
pared with previously proposed algorithms.

It should be mentioned that the idea of propagating a pre-
processed label through the slices of 3D images of prostate
has been utilized in the literature to segment TRUS prostate
(transrectal ultrasound) images. A semiautomatic segmenta-
tion algorithm was proposed in Ref. 22 where the user ini-
tializes the algorithm by clicking on six points of the prostate
boundary in the midgland. The image is then unwarped to re-
duce the deformation effect of the TRUS probe. An ellipse
is then fitted to the midgland to obtain its parameters. The
fitted ellipsoid is used to guide an edge detection algorithm
to obtain the final contour for the midgland. The contour is
then propagated to the remaining slices to be used as initial
points for fitting. The result accuracy in terms of volume ra-
tio was 93%. Qiu et al.23 proposed a semiautomated method
in which the user initializes the algorithm by selecting points
on the boundary of prostate in the first slice. The algorithm
then uses a level set function to extract the contour for the
first slice which is then propagated to the next slice as the ini-
tial contour and shape constraint for segmentation using the
level set function. The proposed algorithm was applied to 3D
TRUS images of 30 patients where an average DSC of 93%
was achieved. The processing time for the segmentation run
on dual core Intel 2.66 GHz was 55 s.

In contrast to our proposed algorithm, these algorithms do
not use registration to propagate a contour from one slice to
the next. Instead, they use the initial contour as the shape con-
straint or initial points for the segmentation algorithm (e.g.,
level set or edge detector) applied to the remaining slices.

3. IMAGE REGISTRATION: BACKGROUND REVIEW

Image registration is the underlying basis of the iBRS al-
gorithm proposed in this paper, so we briefly review the three
main image registration techniques used by our proposed al-
gorithm. Comprehensive surveys of image registration meth-
ods have been provided by Refs. 24 and 25.

The first registration method is rigid registration, which fa-
cilitates the scaling, rotation, and translation of the source im-
age. Rigid transformation can be written in 2D homogeneous
coordinates as

p2 = SRTp1, (1)

where p1 = [x1 y1 1]T and p2 = [x2 y2 1]T. S, T, and
R represent the scaling, translation, and rotation matrices, re-
spectively, as follows:

S =
⎡
⎣ sx 0 0

0 sy 0
0 0 1

⎤
⎦ , T =

⎡
⎣ 1 0 tx

0 1 ty
0 0 1

⎤
⎦ , (2)

R =
⎡
⎣ cos(θ ) − sin(θ ) 0

sin(θ ) cos(θ ) 0
0 0 1

⎤
⎦ . (3)

The second image registration method used by the proposed
algorithm is affine registration, which is a more general form
of rigid registration. In addition to scaling, translation, and
rotation, this allows the shearing of the source image. The
affine transformation matrix can be written as follows:

A =
⎡
⎣a11 a12 tx

a21 a22 ty
0 0 1

⎤
⎦ . (4)

Six parameters need to be optimized for the affine trans-
formation without any restrictions on the elements aij. In our
experiments, an open source implementation26 was used for
both rigid and affine registration methods in which sum of
squared differences (SSD) was used as the similarity measure
(cost function) for the registration

SSD = 1

n

n∑
i=1

(M(i) − F (i))2, (5)

where F and M are static and moving images, respectively,
and n is the number of pixels in each image.

The third registration method used in this paper is a non-
rigid registration technique known as the Demon algorithm.27

The Demon method is a well-known nonrigid registration al-
gorithm that has been successfully used in registering medical
images in different modalities.28, 29 It employs the concept of
an optical flow equation to find small deformations in tempo-
ral image sequences. Let F and M be static and moving im-
ages, respectively, and f and m be the intensities of the static
and moving images, respectively. For a given point p in the
static image, the estimated displacement (i.e., velocity) u re-
quired for point p to match the corresponding point in M is
given by27

u = (m − f )∇f

|∇f |2 + (m − f )2
, (6)

where u = (ux, uy) in 2D, and ∇f is the gradient of the static
image. The term (m − f)2 was added by Thirion27 to stabi-
lize the velocity equation so it can be used for image registra-
tion. The velocity u is based on local information in the static
and moving images. Therefore, Gaussian smoothing (GFluid)
of the velocity field is usually included as a regularization
method for image registration purposes. The original equation
[Eq. (6)] uses the edge information only from the fixed image.
Wang et al.28 modified the equation to also include the edge
information from the moving image. The Demon equation is
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solved iteratively to register two images as follows:

uN = GFluid ∗ uN−1

+ (mN−1 − f )∇f

|∇f |2 + α2(mN−1 − f )2

+ (mN−1 − f )∇m

|∇m|2 + α2(mN−1 − f )2
, (7)

where α is a normalization factor30 and mN − 1 is a trans-
formed version of the moving image calculated using u at
stage N − 1. mN − 1 can be written as GDiff ∗ T N−1(mN−2)
where T is the transformation field smoothed by a Gaussian
filter GDiff.

In our experiments, an open source implementation26 was
used for Demon registration algorithm for which, the follow-
ing parameters were used:

� σFluid = 4: the standard deviation for the Gaussian
smoothing kernel (GFluid) of the pixel velocity field.

� σDiff = 1: the standard deviation for the Gaussian
smoothing kernel (GDiff) of the transformation field.

� Interpolation: Linear.
� α = 4: a constant that reduces the effects of edges and

noise.

4. PROPOSED ALGORITHM

The contouring of medical images for prostate is usu-
ally performed for prostate cancer detection31 and treatment
planning for radiation therapy.32 In prostate cancer detection
which usually includes active surveillance (or monitoring the
disease), one of the important tasks is to estimate the volume
of the prostate in order to calculate the PSA (Prostate-Specific
Antigen) density. The PSA density can be sensitive to changes
in the volume, particularly in low PSA situations (as found
during screening). The iBRS was designed with this specific
clinical workflow in mind. The clinician is only required to
contour three slices of the volume dataset and the algorithm
autogenerates the labels for the remaining slices. The accu-
racy of the estimated volume or volume ratio is usually suf-
ficiently high (90% and 1.11, respectively) for active surveil-
lance purposes.

Images in a volume dataset share a large amount of infor-
mation, especially those that are consequent to each other, be-
cause they represent different crosssections of the same volu-
metric object. In this scenario, image registration should yield
a better result without any need for a large atlas of images.
This is the underlying concept of the iBRS algorithm pro-
posed in this paper. The proposed algorithm registers images
in a given volume dataset against each other, thereby elimi-
nating the need to create an atlas. It can use rigid, affine, or
nonrigid registration methods to generate labels.

The iBRS algorithm automatically generates labels for the
individual slices in a given volume dataset of prostate gland
MR/CT images, provided that the user contours the prostate
gland in the first, middle, and last slice of the volume. We
consider a set of n + 1 slices of prostate gland in a MR/CT

sequence {Ik}k = 0, . . . , n with the slice thickness Th. The iBRS
algorithm can be summarized as follows:

(1) Initialization: An expert user contours the prostate in
three slices I0, I� n

2 �, and In, which are the first (i.e.,
base), middle (i.e., midgland), and last (i.e., apex)
slices in the image sequence. This produces the labels
for the three slices: L0, L� n

2 �, and Ln. Three ROIs are
built around the user’s labels. A linear interpolation
algorithm is used to calculate the interpolated ROIs
for the remaining slices in the image sequence (i.e.,
between I0 and I� n

2 �, and between I� n
2 � and In). The

largest ROI of the two is used when registering one
slice with the other.

(2) Image registration direction 1:

� Starting from I0 and moving forward toward I� n
2 �−1,

each image is registered to the next image as
follows:

T
r1
i−1 = Reg(Ii−1, Ii), (8)

where Reg is a registration method (rigid, affine, or
nonrigid) and i ∈ {1, . . . , � n

2 � − 1}. At each step i,
the computed registration transformation, T

r1
i−1, is

applied to slice Ii − 1 and its label, Li − 1, which gen-
erates the registered image, I

r1
i , and the deformed

label, L
r1
i , which is a candidate label for the next

slice, Ii,

I
r1
i = T

r1
i−1(Ii−1), (9)

L
r1
i = T

r1
i−1(Lr1

i−1), (10)

where L
r1
0 = L0 is provided by the expert user.

� The same steps are repeated starting from In and
moving backward to I� n

2 �+1,

T
r1
j+1 = Reg(Ij+1, Ij ), (11)

where j ∈ {n − 1, n − 2, . . . , � n
2 � + 1}. At each

step j, the computed registration transformation,
T r1

j+1, is applied to slice Ij + 1 and its label, Lr1
j+1,

which generates the registered image, I
r1
j , and the

deformed label, Lr1
j , which is a candidate label for

the previous slice, Ij,

I
r1
j = T

r1
j+1(Ij+1), (12)

L
r1
j = T

r1
j+1(Lr1

j+1), (13)

where Lr1
n = Ln is provided by the expert user.

(3) Image registration direction 2:

� Starting from I� n
2 � and moving backward to I1, each

image is registered to the previous image

T
r2
i+1 = Reg(Ii+1, Ii), (14)

where i ∈ {� n
2 � − 1, � n

2 � − 2, . . . , 1). At each step
i, the computed registration transformation, T r2

i+1, is
applied to slice Ii + 1 and its label, Lr2

i+1, which gen-
erates the registered image, I

r2
i and the deformed
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label, Lr2
i , which is the candidate label for previous

slice, Ii,

I
r2
i = T

r2
i+1(Ii+1), (15)

L
r2
i = T

r2
i+1(Lr2

i+1). (16)

� The same steps are repeated starting from I� n
2 � and

moving forward to In − 1,

T
r2
j−1 = Reg(Ij−1, Ij ), (17)

I
r2
j = T

r2
j−1(Ij−1), (18)

L
r2
j = T

r2
j−1(Lr2

j−1), (19)

where j ∈ {� n
2 � + 1, � n

2 � + 2, . . . , n − 1}.

In Eqs. (16) and (19), L
r2
� n

2 � = L� n
2 � is provided by the

expert user.
(4) Find the best registration for each slice: Steps 2 and

3 yield two registration results for each slice. In other
words, for each slice Ii (Ij) where i �= 0 and i �= � n

2 �
(j �= � n

2 �, and j �= n), we have two registered images
I r1
i and I r2

i (I r1
j and I r2

j ) and two corresponding de-
formed labels Lr1

i and Lr2
i (Lr1

j and Lr2
j ). In order to

generate the final result, an image similarity measure
(i.e., correlation coefficients) is used to calculate the
similarity between the registered images from “image
registration—direction 1 and 2” and the original im-
ages for each slice in the image sequences. These sim-
ilarity measures are used to combine the two labels as
weighted average

Li = sim(I r1
i , Ii) × Lr1

i + sim(I r2
i , Ii) × Lr2

i

sim(I r1
i , Ii) + sim(I r2

i , Ii)
, (20)

where in order to obtain a binary result, Li is binarized
with an optimal threshold, which in our experiments
was set to 0.25.

For the iBRS algorithm, it is expected that the results will
be poor if we only use the first and last slice (instead of the
first, middle, and last slice) because only a portion of the
prostate is visible in the first and last slices, so the prop-
agation of contours using registration techniques might not
work properly as we move toward the middle slice. If we only
use the middle slice for segmentation, however, this method
works fine for slices close to the middle, although we may
lose accuracy as we reach the base or apex slices. This is be-
cause the middle slice is usually very different than a slice
located five to six slices further along and registration cannot
compensate for these differences, which leads to poor results.

5. MATERIALS AND RESULTS

This section presents the test images used in the exper-
iments and the performance evaluation measures. All three

TABLE I. Description of the prostate MR images used in terms of their di-
mensions (pixels and mm), slice thickness (mm), and total number of slices
per volume dataset where the prostate was visible for segmentation (N).

Total Dimensions Dimensions Thickness Slices
studies (pixels) (mm) (mm) per study

32 256 × 256 100 × 100 3 10 ≤ N ≤ 21
43 256 × 256 120 × 120 3 9 ≤ N ≤ 21
3 256 × 256 140 × 140 4 7 ≤ N ≤ 8
2 512 × 512 140 × 140 3 10 ≤ N ≤ 17
17 512 × 512 150 × 150 2.5–3 11 ≤ N ≤ 21
2 512 × 512 160 × 160 3 17 ≤ N ≤ 18
1 512 × 512 180 × 180 3 14

registration methods (i.e., rigid, affine, and nonrigid) were
used to generate results for MR images with iBRS. For CT
images, only the nonrigid registration algorithm was used to
generate results.

5.A. Prostate MR images

The MR images used in this study were derived from an
online database (http://prostateMRimageDatabase.com). The
database contains MR volume datasets provided by Brigham
and Women’s Hospital, the National Center for Image-guided
Therapy, and Harvard Medical School. Images that were
originally available in PNG format with the associated text
files describing their imaging parameters were converted to
DICOM format. The images comprised T2-weighted MR im-
ages (T2W-MR) with endorectal coil. The pulse sequence
groups in the DICOM headers of most of the T2-weighted im-
ages were fast spin echo (FSE), while some were marked as
fast relaxation fast spin echo-accelerated (FRFSE-XL). This
dataset contained images where the slice thickness ranged
from 2.5 to 4.0 mm with varying contrast levels and signal-
to-noise characteristics. All of the images were captured with
a depth of 16 bits and varied in size from 256 × 256 to 512
× 512 pixels. Complete descriptions of the 100 MRI vol-
ume datasets considered in the current study are provided in
Table I. The total number of individual slices that contained a
portion of prostate was about 1200 images. A radiation on-
cologist manually contoured all of the MR images for all
100 patients. We used the manual markings, which are also
known as the gold standard or ground truth images, to mea-
sure the accuracy of our proposed method.

5.B. Prostate MR images for user variability analysis

In addition to the MR images used to analyze the perfor-
mance of our proposed segmentation algorithm, for the user
variability analysis, we used 15 MR image volume datasets
(Taken from the same online database as the one used in
Sec. 5.A.) which were different from the original data of 100
patients described in Sec. 5.A (with 180 individual slices that
contained a portion of prostate). Each volume dataset was
manually contoured by five different radiation oncologists.
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TABLE II. Description of the prostate MR images used to analyze the user
variability in terms of their dimensions (pixels and mm), slice thickness
(mm), and total number of slices per volume dataset where the prostate was
visible for segmentation (N).

Total Dimensions Dimensions Thickness Slices
studies (pixels) (mm) (mm) per study

11 512 × 512 150 × 150 3 11 ≤ N ≤ 17
1 512 × 512 160 × 160 3 13
3 512 × 512 180 × 180 3 12 ≤ N ≤ 22

Table II shows complete descriptions of the MR images used
in the user variability analysis.

5.C. Prostate CT images

We used 17 volume datasets of CT images (with 150 in-
dividual slices that contained a portion of prostate) acquired
at the London Health Sciences Centre, London, Ontario,
Canada, to evaluate the iBRS algorithm using the nonrigid
registration method. The image dimensions were 512 × 512
(pixels) and the pixel spacing varied from 0.85 to 1.17 mm.
The slice thickness was 3 mm in all volume sets and the total
number of slices per study where the prostate was visible for
segmentation varied between 8 and 26. An expert manually
contoured all of the CT images that contained a portion of the
prostate gland for all 17 patient volume datasets (Table III).

5.D. Slice accuracy

The accuracy of individual slices was measured by com-
paring the automatically generated labels with the ones drawn
manually by a clinician (i.e., the ground truth images). Dice
similarity coefficient (DSC) (Ref. 33) is a well-known accu-
racy measure which is defined as

DSC = 2|Bm

⋂
Ba|

|Bm| + |Ba| , (21)

where Bm and Ba are the manually and automatically gener-
ated labels, respectively.

⋂
represents the shared information

in the two binary images.

5.E. Estimation of the prostate volume

After the slices of a MR/CT volume dataset have been au-
tosegmented or manually contoured, the area of each slice,

TABLE III. Description of the prostate CT images used in terms of their
dimensions (pixels and mm), slice thickness (mm), and total number of slices
per volume dataset where the prostate was visible for segmentation (N).

Total Dimensions Dimensions Thickness Slices
studies (pixels) (mm) (mm) per study

7 512 × 512 447 × 447 ≤ dim ≤ 500 × 500 3 8 ≤ N ≤ 26
4 512 × 512 500 × 500 ≤ dim ≤ 550 × 550 3 8 ≤ N ≤ 11
6 512 × 512 550 × 550 ≤ dim ≤ 600 × 600 3 8 ≤ N ≤ 18

A = {Ai, |i ∈ {1, . . . , n}}, is calculated, where n is the num-
ber of slices in a volume dataset where a portion of the
prostate is visible. The estimated volume of the prostate in
each volume dataset or image sequence is then calculated
based on Ai and the slice thickness Th, as follows:

V = T h ×
(

A1 + AN

3
+

N−1∑
i=2

Ai

)
. (22)

This is similar to the approach used in Ref. 15, although
a modification (i.e., adding A1+AN

3 ) was made to the equa-
tion to consider the start-point and end-point of the prostate
volume. In this calculation, it is assumed that the start-point
and the end-point of the prostate have a distance of Th from
the adjacent slices which means base and apex, respectively.
This means that there are two cone-shape volumes with Th
as height and A1 and AN as bases giving volumes of T h × A1

3

and T h × AN

3 .

5.F. Calculation of the volume accuracy and
volume ratio

To calculate the volume accuracy, we use DSC [Eq. (21)]
to calculate the Dice value over the entire 3D prostate. We
also use another measure, volume ratio, which is the ratio of
the volume values of the autosegmentation algorithm results
Va and the manual contouring Vm, respectively,

VRatio(%) = Va

Vm

× 100. (23)

5.G. Mean and maximum absolute distances

For each point on the autosegmentation result, we mea-
sured the distance from the corresponding point on the man-
ual label to calculate the mean absolute distance (MAD) and
maximum absolute distance (MAXD).

5.H. Results for the iBRS algorithm with MR images

We present the results of experiments performed using MR
images from 100 patients (a total of 1200 images with labels).
Figure 1 shows the prostate MR image sequence (i.e., volume
dataset) of one patient where a portion of the prostate gland
is visible. As explained in Sec. 4, an expert user manually
contours the prostate in the first, middle, and the last slices
of a MR image sequence when using the iBRS algorithm.
For example, Fig. 1 shows the manual markings (solid white
lines) for three slices (i.e., S1, S7, and S12). The solid white
rectangles around the segmented prostate represent the ROIs
constructed using the prostate boundary defined by the user
labels. The dotted rectangles between the segmented slices
are the interpolated ROIs for the remaining slices. Figure 2
shows the results of the iBRS autosegmentation algorithm for
the example shown in Fig. 1 using three different registration
methods. It is clear all three registration methods yielded good
results for segmentation of the middle slices in Fig. 1.
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FIG. 1. Prostate MR image sequence for a sample volume dataset. The
prostate was marked in the first, middle, and last images by an expert user.
The dotted rectangles between the marked images represent the interpolated
ROIs calculated using the ROIs of the user labels. The slice numbers are
shown in the top left corner. All images have been brightened for display
purposes only.

Table IV and Fig. 3 summarize the results of autosegmen-
tation of the prostate using the iBRS algorithm for all 100
patients. Almost for all measures, the nonrigid algorithm out-
performed the other two methods. The median individual and
volume DSCs (In calculating the accuracy, the first, middle,
and last slices were excluded to only take the autosegmenta-
tion result into account.) increased from 88.51% and 85.53%,
respectively, for rigid registration to 91.58% and 89.72%, re-
spectively, for nonrigid registration where the volume ratio
decreased from 1.21 for rigid registration to 1.11 for non-
rigid registration. MAD value decreased by 0.59 mm for non-
rigid registration compared to rigid registration (i.e., 1.94 vs
2.53 mm). Interestingly, MAXD value was slightly higher for
nonrigid registration compared to rigid registration (i.e., 6.32
vs 6.25 mm).

The computational time required for the segmentation
of one prostate volume dataset, run on a dual core Intel
3.33 GHz processor, is dramatically increased from 13 s
(1.17 s per slice) with rigid registration to about 3 min
(16.82 s per slice) with nonrigid registration, while affine
registration required about 47 s (4.25 s per slice). In time-
sensitive settings where it is important to produce the results
in a short time, it may be more practical to use rigid registra-
tion since it produced reasonably accurate results (e.g., DSC
of 88.51%) in a short time (i.e., 13 s).

FIG. 2. Autosegmentation results with the iBRS algorithm for the sample
volume dataset shown in Fig. 1. The segmentation results are shown for rigid
registration (dashed line), affine registration (dotted line), and Demon (non-
rigid) registration (dashed-dotted line). The solid line labels are the manual
contours provided by an expert user.

5.I. Results for the iBRS algorithm using MR images
in the user variability analysis

We compared the sensitivity of the iBRS algorithm to the
user variability using the 15 volume datasets described in
Table II. Each volume dataset was manually contoured by five
expert users. Table V presents the results for automated seg-
mentation of the prostates from 15 patients using the iBRS al-
gorithm. The Demon (nonrigid) registration method was used
by the iBRS algorithm. The proposed algorithm was robust to
user variability, e.g., the standard deviation of the DSC was
1.77%. To calculate the user variability among the experts,
STAPLE algorithm21 was used to create a consensus contour
for each slice of the 15 datasets using the five manual seg-
mentations. Next, for each dataset, the manual segmentations
of each expert was compared to the corresponding consensus
contour using the DSC measure and the results were aver-
aged. This quantified a user agreement of 91.44% which cor-
responds to a user variability of 8.56%.

5.J. Results with the iBRS algorithm using CT images

We applied the iBRS algorithm with the nonrigid registra-
tion method to CT images of the prostate from 17 patients
(a total of 150 images) (Table III) and the results were com-
pared with the manually contoured images. The median vol-
ume accuracy for all 17 patients was 88.98% ± 3.67% (vol-
ume ratio 1.13 ± 0.08). The median DSC for single slices was

TABLE IV. Prostate segmentation median results using the iBRS algorithm for 100 patients, which includes DSC for individual slices (%), DSC for entire
volume (%), volume ratio, MAD (mm), MAXD (mm), and processing time (s).

Reg. Alg./accuracy DSC (Slice) (%) DSC (Vol.) (%) Vol. Ratio MAD (mm) MAXD (mm) Time (s)

Rigid registration 88.51 ± 11 85.53 ± 3.09 1.21 ± 0.09 2.53 ± 1.78 6.25 ± 3.61 12.62 ± 7.60
Affine registration 87.16 ± 11 84.44 ± 4.37 1.26 ± 0.12 2.92 ± 2.06 7.06 ± 3.68 47.05 ± 32.15
Demon registration 91.58 ± 7 89.72 ± 2.72 1.11 ± 0.07 1.94 ± 1.13 6.32 ± 3.28 182.04 ± 112.37
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FIG. 3. DSC value comparison between the automatically generated labels and the manual markings for all 100 patients MR images using the iBRS algorithm
with three registration methods. (Left) Rigid registration, (Middle) Affine registration, and (Right) Demon (nonrigid) registration.

90.56% ± 4.21%. The average MAD and MAXD values were
2.81 ± 1.09 mm and 8.69 ± 3.23 mm, respectively.

The average prostate segmentation time for a CT volume
dataset (run in Matlab prototype) was about 48 s (6 s per
slice).

6. DISCUSSION

The contouring of medical images is a major part of diag-
nosis, active surveillance (e.g., using MR images), and treat-
ment planning (generally using CT scans) but it faces two
major challenges. First, manual contouring is a tedious task
and requires a significant time commitment by clinicians. Sec-
ond, there is a considerable amount of uncertainty when de-
termining the boundaries of organs or tumors because of in-
terobserver variability during anatomical contouring.34 The
autosegmentation tools aim to reduce the contouring time
(higher efficiency) by generating labels that require less user
editing or corrections, and to reduce the amount of interob-
server variability (more reliability) by generating base labels
so a clinician only needs to edit the automatically generated
labels, rather than contouring images completely manually.

The complexity of medical images and the vagueness of
the objects of interest in such images mean that most seg-
mentation algorithms require user intervention to correct or
edit the autosegmentation results. In the iBRS algorithm, a
user is required to contour the first, middle, and last slices
of the volume data. The iBRS algorithm registers each im-
age twice. This contrasts with conventional ABS techniques

where multiple image registration may be required, depend-
ing on the size of the atlas and the algorithm design. More
frequent use of image registrations incurs higher computa-
tional costs, which is a major factor that significantly limits
the scalability of ABS.

In terms of the overall accuracy in MR images, the rigid
registration performed slightly better compared to affine reg-
istration. This may be due to the selected metric as similar-
ity measure in the implementation (i.e., sum of squared dis-
tances). However, the nonrigid registration boosted the accu-
racy in almost all measures (e.g., DSC of 91.58%). This was
expected because nonrigid registration usually works better
for soft tissues, such as the prostate, which are deformable.
The highly accurate results are interesting given the fact that
no atlas was used. This is due to exploiting the interslice re-
dundancy among slices in a volume dataset. The consequent
slices usually share highly redundant information so propa-
gating the registration result from one slice (e.g., the middle
slice) through the other slices (e.g., slices from the middle to-
ward the first) yields high accuracy results. For all three reg-
istration techniques, the accuracy of slices near the base/apex
were lower than the mid slices if only a small portion of the
prostate was visible. Figure 4 illustrates this by measuring the
DSC of slices with respect to the distance of the slice from
the midslice. It was also observed that the slice thickness of
the image volumes affects the accuracy of results; the smaller
the slice thickness, the higher the accuracy of results. For our
MRI datasets of 100 patients, the slice thicknesses are 2.5 mm
(4 patients) 3 mm (93 patients), and 4 mm (3 patients) with the
median DSCs of 91.04%, 89.73%, and 88.45%, respectively.

TABLE V. Prostate segmentation median results using the iBRS algorithm (with Demon registration) for
15 patients for user variability analysis, which includes DSC for individual slices (%), DSC for entire volume
(%), volume ratio, MAD (mm) and MAXD (mm).

Experts/ DSC (slice) DSC (volume) Volume MAD MAXD
accuracy (%) (%) ratio (mm) (mm)

1 90.74 90.22 1.08 1.79 5.34
2 92.14 89.74 1.10 1.71 5.59
3 87.32 86.35 1.16 2.66 7.51
4 90.29 88.61 1.14 2.05 6.55
5 89.66 87.57 1.18 2.70 7.45
Mean ±STD 90.03 ± 1.77 88.50 ± 1.58 1.13 ± 0.04 2.18 ± 0.47 6.49 ± 1.01
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FIG. 4. Average DSC values for slices with respect to their distance from
the midslice in prostate volume.

The iBRS algorithm also produced highly accurate results
for CT images using the nonrigid registration algorithm (i.e.,
median volume accuracy and individual slice accuracy of
88.98% and 90.56%, respectively).

In terms of the computational costs, the iBRS algorithm re-
quired 1.17 s per slice for rigid and 17 s per slice for nonrigid
registration. Even with the rigid registration, the accuracy of
the proposed algorithm with MR images were almost identi-
cal to the best result reported in the previous studies (i.e., DSC
of 88.51% versus up to 88%, Sec. 2) while the processing time
was much shorter (i.e., 1.17 s per slice or 13 s per volume).
The iBRS algorithm was implemented as a prototype in Mat-
lab but the measured time was still in the order of seconds,
whereas the computational times reported in previous stud-
ies in the literature were several minutes, even though most
of them were implemented in C++. This was because our al-
gorithm only used two registrations per image and no pre- or
postprocessing.

The proposed algorithm was evaluated to determine the
effect of the user variability on the segmentation results us-
ing the datasets of 15 patients, which were contoured by five
different radiation oncologists. It was confirmed that the al-
gorithm was insensitive to user variability where the average
DSC variation was 1.77%.

The results reported for MR images in this paper were for
more than 100 patients volume datasets (about 1200 slices).
The large dataset used in our experiments ensured the reliabil-
ity of the results reported. The results for the iBRS algorithm
with CT images confirmed the applicability of our proposed
interslice registration-based algorithm for prostate segmenta-
tion in both MR and CT modalities.

Since even rigid registration of adjacent slices already
gives good performance, one might naturally expect that a
simple interpolation method should give a reasonable results
where the first, middle, and last slices manual labels are used
to interpolate the contours of the remaining slices. We tested
this hypothesis on all 100 patients MR data and it was found
that with simple linear interpolation, the median DSC value
is 82.59%, which is significantly below what our algorithm
yields (i.e., 91.58%).

In addition to prostate volume estimation for PSA density
calculation, the proposed method in this paper is well suited
for treatment planning for radiation therapy where 2D images
and contours are used for delineation of regions of interest. As
a future work, the 2D contours created by the iBRS algorithm
can be used to reconstruct the 3D surface of the prostate gland.
There are surface reconstruction methods proposed in the lit-
erature that can be applied to the result of the iBRS algorithm.
For example, Treece et al.35 proposed a surface reconstruction
method using the 2D contours based on maximal disc guided
interpolation. In another work, Kazhdan et al.36 showed that
the surface reconstruction problem for a set of oriented points
on 2D contours can be solved using Poisson problem. This
method was used in Ref. 37 to reconstruct the 3D surface of
breast MRI from 2D contours.

7. CONCLUSION

In this paper, we introduced a new algorithm for segment-
ing the prostate gland in T2-weighted MR and CT images.
The Inter-Slice Bidirectional Registration-based Segmenta-
tion or iBRS algorithm requires the input of labels for three
slices (first, middle, and last) in a volume dataset, before it au-
tomatically generates the labels of the remaining slices. The
proposed algorithm exploits the interslice data redundancy of
the images in a volume dataset and eliminates the need for
an atlas, which minimizes the computational costs. We ver-
ified the performance of the algorithm using a large dataset
of prostate MR images (1200 images of 100 patient volume
datasets), which demonstrated its high accuracy depending on
the registration method used (87%–92% DSC for individual
slices and 84%–90% for volume). The iBRS algorithm was
also evaluated to determine the user variability effect on the
segmentation results using datasets from 15 patients, which
were contoured by five clinicians. It was confirmed that the
algorithm was robust to user variability and the DSC varia-
tion was only 1.77% among different users. The iBRS algo-
rithm was also applied to prostate CT images from 17 patients
where the average accuracies for the volume and individual
slices were 89% and 91% (DSC), respectively. The compu-
tational time required by the algorithm varied from 1.17 s to
17 s per segmentation in MR images (6 s in CT images). The
computational time was measured using Matlab prototypes of
the algorithm. It is expected that C++ implementations of the
algorithm will reduce the processing time significantly.

ACKNOWLEDGMENTS

The authors would like to thank FedDev Ontario, Canada,
for supporting this research. The authors would also like to
thank Segasist Technologies for providing DICOM datasets
and assistance for implementing and running the experiments.

a)Electronic mail: farzad.khalvati@uwaterloo.ca
1Prostate Cancer Canada, “What’s your number? Prostate Cancer Canada
Annual Report,” 2010 (available URL: www.prostatecancer.ca).

2M. Roach, P. Faillace-Akazawa, C. Malfatti, J. Holland, and H.
Hricak, “Prostate volumes defined by magnetic resonance imaging and

Medical Physics, Vol. 40, No. 12, December 2013

http://www.prostatecancer.ca


123503-11 Khalvati et al.: Interslice bidirectional registration-based segmentation of the prostate gland 123503-11

computerized tomographic scans for three-dimensional conformal radio-
therapy,” Int. J. Radiat. Oncol., Biol., Phys. 35, 1011–1018 (1996).

3K. Kagawa, W. R. Lee, T. E. Schultheiss, M. A. Hunt, A. H. Shaer, and
G. E. Hanks, “Initial clinical assessment of CT-MRI image fusion software
in localization of the prostate for 3D conformal radiation therapy,” Int. J.
Radiat. Oncol., Biol., Phys. 38, 319–325 (1997).

4R. J. Steenbakkers, K. E. Deurloo, P. J. Nowak, J. V. Lebesque, M. van
Herk, and C. R. Rasch, “Reduction of dose delivered to the rectum and
bulb of the penis using MRI delineation for radiotherapy of the prostate,”
Int. J. Radiat. Oncol., Biol., Phys. 57, 1269–1279 (2003).

5J. H. Jonsson, M. G. Karlsson, M. Karlsson, and T. Nyholm, “Treatment
planning using MRI data: An analysis of the dose calculation accuracy for
different treatment regions,” Radiat Oncol. 5(62), (2010).

6C. H. Bangma, A. Q. Niemer, D. E. Grobbee, and F. H. Schrder, “Transrec-
tal ultrasonic volumetry of the prostate: In vivo comparison of different
methods,” Prostate 28, 107–110 (1996).

7S. Hoffelt, L. Marshal, M. Garzotto, A. Hung, J. Holland, and T. M. Beer,
“A comparison of CT scan to transrectal ultrasound measured prostate vol-
ume in untreated prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 57,
29–32 (2003).

8L. M. Eri, H. Thomassen, B. Brennhovd, and L. L. Haheim, “Accuracy and
repeatability of prostate volume measurements by transrectal ultrasound,”
Prostate Cancer Prostatic Dis 5, 273–278 (2002).

9B. van Ginneken, A. F. Frangi, J. J. Staal, B. M. ter Haar Romeny, and
M. A. Viergever, “Active shape model segmentation with optimal features,”
IEEE Trans. Med. Imaging 21, 924–933 (2002).

10T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active shape models-their
training and application,” Comput. Vis. Image Underst. 61, 38–59 (1995).

11H. M. Ladak, F. Mao, Y. Wang, D. B. Downey, D. A. Steinman, and A. Fen-
ster, “Prostate boundary segmentation from 2D ultrasound images,” Med.
Phys. 27, 1777–1788 (2000).

12D. Shen, Y. Zhan, and C. Davatzikos, “Segmentation of prostate boundaries
from ultrasound images using statistical shape model,” IEEE Trans. Med.
Imaging 22, 539–551 (2003).

13A. C. Hodge, A. Fenster, D. B. Downey, and H. M. Ladak, “Prostate bound-
ary segmentation from ultrasound images using 2D active shape models:
Optimisation and extension to 3D,” Comput. Methods Programs Biomed.
84, 99–113 (2006).

14Y. Zhan and D. Shen, “Deformable segmentation of 3-D ultrasound prostate
images using statistical texture matching method,” IEEE Trans. Med. Imag-
ing 25, 256–272 (2006).

15R. Toth, B. N. Bloch, E. M. Genega, N. M. Rofsky, R. E. Lenkinski,
M. A. Rosen, A. Kalyanpur, S. Pungavkar, and A. Madabhushi, “Accu-
rate prostate volume estimation using multifeature active shape models on
T2-weighted MRI,” Acad. Radiol. 18, 745–754 (2011).

16S. Martin, J. Troccaz, and V. Daanen, “Automated segmentation of the
prostate in 3D MR images using a probabilistic atlas and a spatially con-
strained deformable model,” Med. Phys. 37, 1579–1590 (2010).

17S. Klein, U. A. van der Heide, I. M. Lips, M. van Vulpen, M. Staring,
and J. P. W. Pluim, “Automatic segmentation of the prostate in 3D MR
images by atlas matching using localized mutual information,” Med. Phys.
35, 1407–1417 (2008).

18S. Klein, U. A. van der Heide, B. W. Raaymakers, A. N. T. J. Kotte, M.
Staring, and J. P. W. Pluim, “Segmentation of the prostate in MR images
by atlas matching,” in Proceedings of the IEEE Conference on Biomedical
Imaging (2007), pp. 1300–1303.

19J. Dowling, J. Fripp, P. Greer, J. Patterson, S. Ourselin, and O. Salvado,
Proceedings of 2009 MICCAI Prostate Segmentation Challange (London,
2009), pp. 17–24.

20T. R. Langerak, U. A. van der Heide, A. N. T. J. Kotte, M. A. Viergever,
M. van Vulpen, and J. P. W. Pluim, “Label fusion in atlas-based segmenta-
tion using a selective and iterative method for performance level estimation
(SIMPLE),” IEEE Trans. Med. Imaging 29, 2000–2008 (2010).

21S. K. Warfield, K. H. Zou, and W. M. Wells, “Simultaneous truth and
performance level estimation (STAPLE): An algorithm for the valida-
tion of image segmentation,” IEEE Trans. Med. Imaging 23, 903–921
(2004).

22S. S. Mahdavi, N. Chng, I. Spadinger, W. J. Morris, and S. E. Salcud-
ean, “Semi-automatic segmentation for prostate interventions,” Med. Im-
age Anal. 15, 226–237 (2011).

23W. Qiu, J. Yuan, E. Ukwatta, D. Tessier, and A. Fenster, “Three-
dimensional prostate segmentation using level set with shape constraint
based on rotational slices for 3D end-firing TRUS guided biopsy,” Med.
Phys. 40, 072903 (12pp.) (2013).

24J. B. A. Maintz and M. A. Viergever, “A survey of medical image registra-
tion,” Med. Image Anal. 2, 1–36 (1998).

25L. G. Brown, “A survey of image registration techniques,” ACM Comput.
Surv. 24, 325–376 (1992).

26D. J. Kroon, “Multimodality non-rigid demon algorithm image regis-
tration,” MatlabCentral, 2008 (available URL: www.mathworks.com/
matlabcentral/fileexchange/21451-multimodality-non-rigid-demon-
algorithm-image-registration).

27J. P. Thirion, “Image matching as a diffusion process: An analogy with
Maxwell’s demons,” Med. Image Anal. 2(3), 243–260 (1998).

28H. Wang, L. Dong, J. O’Daniel, R. Mohan, A. S. Garden, K. K. Ang,
D. A. Kuban, M. Bonnen, J. Y. Chang, and R. Cheung, “Validation of an
accelerated ‘demons’ algorithm for deformable image registration in radi-
ation therapy,” Phys. Med. Biol. 50(12), 2887–2905 (2005).

29A. Guimond, A. Roche, N. Ayache, and J. Meunier, “Three-dimensional
multimodal brain warping using the demons algorithm and adaptive inten-
sity corrections,” IEEE Trans. Med. Imaging 20(1), 58–69 (2001).

30D. J. Kroon and C. H. Slump, “MRI modality transformation in demon reg-
istration,” in Proceedings of the IEEE International Symposium on Biomed-
ical Imaging: From Nano to Macro, ISBI 09 (2009), pp. 963–966.

31D. L. Langer, T. H. van der Kwast, A. J. Evans, J. Trachtenberg, B. C.
Wilson, and M. A. Haider, “Prostate cancer detection with multi-parametric
MRI: Logistic regression analysis of quantitative T2, diffusion-weighted
imaging, and dynamic contrast-enhanced MRI,” Magn. Reson. Imaging 30,
327–334 (2009).

32B. Hentschel, W. Oehler, D. Strau, A. Ulrich, and A. Malich, “Definition
of the CTV prostate in CT and MRI by using CT-MRI image fusion in
IMRT planning for prostate cancer,” Strahlenther. Onkol. 187(3), 183–190
(2011).

33L. R. Dice, “Measure of the amount of the ecologic association between
species,” Ecology. 26, 297–302 (1945).

34M. G. Jameson, L. C. Holloway, and P. J. Vial, “A review of methods of
analysis in contouring studies for radiation oncology,” J. Med. Imaging
Radiat. Oncol. 54, 401–410 (2010).

35G. M. Treece, R. W. Prager, A. H. Gee, and L. Berman, “Surface interpola-
tion from sparse cross sections using region correspondence,” IEEE Trans.
Med. Imaging 19, 1106–1114 (2000).

36M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,”
in Proceedings of the Fourth Eurographics Symposium on Geometry Pro-
cessing, SGP 06 (Eurographics Association, Aire-la-Ville, Switzerland,
2006), pp. 61–70.

37C. Gallego Ortiz and A. L. Martel, “Automatic atlas-based segmentation of
the breast in MRI for 3D breast volume computation,” Med. Phys. 39(10),
5835–5848 (2012).

Medical Physics, Vol. 40, No. 12, December 2013

http://dx.doi.org/10.1016/0360-3016(96)00232-5
http://dx.doi.org/10.1016/S0360-3016(96)00620-7
http://dx.doi.org/10.1016/S0360-3016(96)00620-7
http://dx.doi.org/10.1016/S0360-3016(03)01446-9
http://dx.doi.org/10.1186/1748-717X-5-62
http://dx.doi.org/10.1002/(SICI)1097-0045(199602)28:2<107::AID-PROS5>3.0.CO;2-D
http://dx.doi.org/10.1016/S0360-3016(03)00509-1
http://dx.doi.org/10.1038/sj.pcan.4500568
http://dx.doi.org/10.1109/TMI.2002.803121
http://dx.doi.org/10.1006/cviu.1995.1004
http://dx.doi.org/10.1118/1.1286722
http://dx.doi.org/10.1118/1.1286722
http://dx.doi.org/10.1109/TMI.2003.809057
http://dx.doi.org/10.1109/TMI.2003.809057
http://dx.doi.org/10.1016/j.cmpb.2006.07.001
http://dx.doi.org/10.1109/TMI.2005.862744
http://dx.doi.org/10.1109/TMI.2005.862744
http://dx.doi.org/10.1016/j.acra.2011.01.016
http://dx.doi.org/10.1118/1.3315367
http://dx.doi.org/10.1118/1.2842076
http://dx.doi.org/10.1109/ISBI.2007.357098
http://dx.doi.org/10.1109/ISBI.2007.357098
http://dx.doi.org/10.1109/TMI.2010.2057442
http://dx.doi.org/10.1109/TMI.2004.828354
http://dx.doi.org/10.1016/j.media.2010.10.002
http://dx.doi.org/10.1016/j.media.2010.10.002
http://dx.doi.org/10.1118/1.4810968
http://dx.doi.org/10.1118/1.4810968
http://dx.doi.org/10.1016/S1361-8415(01)80026-8
http://dx.doi.org/10.1145/146370.146374
http://dx.doi.org/10.1145/146370.146374
http://www.mathworks.com/matlabcentral/fileexchange/21451-multimodality-non-rigid-demon-algorithm-image-registration
http://www.mathworks.com/matlabcentral/fileexchange/21451-multimodality-non-rigid-demon-algorithm-image-registration
http://www.mathworks.com/matlabcentral/fileexchange/21451-multimodality-non-rigid-demon-algorithm-image-registration
http://dx.doi.org/10.1016/S1361-8415(98)80022-4
http://dx.doi.org/10.1088/0031-9155/50/12/011
http://dx.doi.org/10.1109/42.906425
http://dx.doi.org/10.1109/ISBI.2009.5193214
http://dx.doi.org/10.1109/ISBI.2009.5193214
http://dx.doi.org/10.1002/jmri.21824
http://dx.doi.org/10.1007/s00066-010-2179-1
http://dx.doi.org/10.2307/1932409
http://dx.doi.org/10.1111/j.1754-9485.2010.02192.x
http://dx.doi.org/10.1111/j.1754-9485.2010.02192.x
http://dx.doi.org/10.1109/42.896787
http://dx.doi.org/10.1109/42.896787
http://dx.doi.org/10.1118/1.4748504

