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Abstract: Differential Evolution (DE) is an effective, robust, and simple global optimization algorithm.
Opposition-based differential evolution (ODE) has been proposed based on DE; it employs opposition-based pop-
ulation initialization and generation jumping to accelerate convergence speed. ODE shows promising results in
terms of convergence rate, robustness, and solution accuracy. This paper investigates its performance on large
scale problems. A recently proposed seven-function benchmark test suite for the CEC-2008 special session and
competition on large scale global optimization has been utilized for the current investigation. Results interestingly
confirm that ODE outperforms its parent algorithm (DE) on all high dimensional (500D) benchmark functions
(F1-F7). By these supporting results, ODE is recommended by authors as an appropriate candidate for cooperative
coevolutionary algorithms (CCA) to tackle with large scale problems. All required details about the testing plat-
form, comparison methodology, and also achieved results are provided.

Key–Words:Opposition-Based Differential Evolution (ODE), Opposition-Based Optimization (OBO), Opposition-
Based Computation (OBC), Opposition-Based Learning (OBL), Cooperative Coevolutionary Algorithms (CCA),
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1 Introduction

Generally speaking, evolutionary algorithms (EAs)
are well-established techniques to approach those
practical problems which are difficult to solve for the
classical optimization methods. Tackling problems
with mixed-type of variables, many local optima,
undifferentiable or non-analytical functions, which
are frequently faced in all science and engineering
fields, are some examples to highlight the outstand-
ing capabilities of the evolutionary algorithms. Be-
cause of evolutionary nature of EA algorithms, as a
disadvantage, they are computationally expensive in
general. Furthermore, the performance of EAs de-
creases sharply by increasing the dimensionality of
optimization problems. The main reason for that is
increasing the search space dimensionality would in-
crease complexity of the problem exponentially. On
the other hand, for many real-world applications, we
are faced with problems which contain a huge num-
ber of variables. Due to such a need, supporting the
scalability is a very valuable characteristic for any
optimization method. In fact, reducing the required

number of function calls to achieve a satisfactory so-
lution (which means accelerating convergence rate)
is always valuable; especially when we are faced
with expensive optimization problems. Employing
smart sampling and meta-modelling are some com-
monly used approaches [21, 22] to tackle this kind of
problems.

Many comparison studies confirm that the differ-
ential evolution (DE) outperforms many other evolu-
tionary optimization methods. In order to enhance
DE, opposition-based differential evolution (ODE)
was proposed by Rahnamayan et al. in 2006 [2, 3, 5]
and then quasi-oppositional DE (QODE) in 2007 [4].
These algorithms (ODE and QODE) are based on
DE and the opposition concept [8, 1]. ODE was fol-
lowed by others to propose opposition-based parti-
cle swarm algorithms [17, 18], tracking dynamic ob-
jects using ODE [9], opposition-based ant colony al-
gorithms [10, 11], enhancing self-adaptive DE with
population size reduction to tackle large scale prob-
lems [16]1, and introducing an adaptive DE applied

1It uses opposition concept implicitly by changing the sign
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to tuning of a Chess program [19].
ODE employs opposition-based population initial-

ization [6] and generation jumping to accelerate con-
vergence rate of DE. The main idea behind the op-
position is the simultaneous consideration of an es-
timate and its corresponding opposite estimate (i.e.,
guess and opposite guess) in order to achieve a better
approximation for the current candidate solution.

The reported results for ODE were promising on
low and medium size problems (D <100). But pre-
viously, ODE was not investigated in scalability. By
experimental verification, current work tries to find
out an answer for this question: Which one, DE or
ODE, presents higher efficiency to solve large scale
problems?

Organization of this paper is as follows: Section
2 provides the brief overview of DE and ODE. In
Section 3, detailed experimental results and also per-
formance analysis are given and explained. Finally,
the work is concluded in Section 4.

2 Brief Review of DE and ODE
Differential evolution (DE) and its extended version
by opposition-based concept (ODE) has been briefly
reviewed in following subsections.

2.1 Differential Evolution (DE)
Differential Evolution (DE) was proposed by Price
and Storn in 1995 [12]. It is an effective, robust, and
simple global optimization algorithm [13]. DE is a
population-based directed search method [14]. Like
other evolutionary algorithms, it starts with an ini-
tial population vector, which is randomly generated
when no preliminary knowledge about the solution
space is available. Each vector of the initial popula-
tion can be generated as follows [13]:

Xi,j = aj + randj(0, 1)× (aj − bj); j = 1, 2, ..., D,
(1)

whereD is the problem dimension;aj andbj are
the lower and the upper boundaries of the variablej,
respectively.rand(0, 1) is the uniformly generated
random number in[0, 1].

Let us assume thatXi,G(i = 1, 2, ..., Np) are
candidate solution vectors in generationG (Np :
population size). Successive populations are gen-
erated by adding the weighted difference of two

of F and so searching in the opposite direction.

randomly selected vectors to a third randomly se-
lected vector. For classical DE (DE/rand/1/bin),
the mutation, crossover, and selection operators are
straightforwardly defined as follows:

Mutation - For each vectorXi,G in generationG
a mutant vectorVi,G is defined by

Vi,G = Xa,G + F (Xc,G −Xb,G), (2)

where i = {1, 2, ..., Np} and a, b, and c are
mutually different random integer indices selected
from {1, 2, ..., Np}. Further, i, a, b, and c are
different so thatNp ≥ 4 is required.F ∈ [0, 2] is a
real constant which determines the amplification of
the added differential variation of(Xc,G − Xb,G).
Larger values forF result in higher diversity in the
generated population and lower values cause faster
convergence.

Crossover - DE utilizes the crossover operation to
generate new solutions by shuffling competing vec-
tors and also to increase the diversity of the popu-
lation. For the classical DE (DE/rand/1/bin), the
binary crossover (shown by ‘bin’ in the notation) is
utilized. It defines the following trial vector:

Ui,G = (U1i,G, U2i,G, ..., UDi,G), (3)

Uji,G =

{
Vji,G if randj(0, 1) ≤ Cr ∨ j = k,
Xji,G otherwise.

(4)
Cr ∈ (0, 1) is the predefined crossover rate, and

randj(0, 1) is the jth evaluation of a uniform ran-
dom number generator.k ∈ {1, 2, ..., D} is a ran-
dom parameter index, chosen once for eachi to make
sure that at least one parameter is always selected
from the mutated vector,Vji,G. Most popular values
for Cr are in the range of(0.4, 1) [15].

Selection -This is an approach which must decide
which vector (Ui,G or Xi,G) should be a member of
next (new) generation,G + 1. For a minimization
problem, the vector with the lower value of objective
function is chosen (greedy selection).

This evolutionary cycle (i.e., mutation, crossover,
and selection) is repeatedNp (population size) times
to generate a new population. These successive gen-
erations are produced until meeting the predefined
termination criteria.
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2.2 Opposition-Based DE (ODE)
Similar to all population-based optimization algo-
rithms, two main steps are distinguishable for the
DE, population initialization and producing new
generations by evolutionary operations such as
selection, crossover, and mutation. ODE enhances
these two steps based on looking at the opposite
points (let say individuals in the population). The
opposite point has a straightforward definition as
follows:

Definition (Opposite Number) -Let x ∈ [a, b] be
a real number. The opposite numberx̆ is defined by

x̆ = a + b− x. (5)

Similarly, this definition can be extended to higher
dimensions as follows [8, 1]:

Definition (Opposite Point in n-Dimensional
Space) -Let P = (x1, x2, ..., xn) be a point in n-
dimensional space, wherex1, x2, ..., xn ∈ R and
xi ∈ [ai, bi] ∀i ∈ {1, 2, ..., n}. The opposite point
P̆ = (x̆1, x̆2, ..., x̆n) is completely defined by its
components

x̆i = ai + bi − xi. (6)

Fig.1 presents the flowchart of ODE. White boxes
present steps of the classical DE and grey ones
are expended by opposition concept. Blocks (1)
and (2) present opposition-based initialization and
opposition-based generation jumping, respectively.

Extended blocks by opposition concept will be ex-
plained in the following subsections.

2.2.1 Opposition-Based Population Initializa-
tion

By utilizing opposite points, we can obtain fitter
starting candidate solutions even when there is no
a priori knowledge about the solution(s). Block
(1) in Fig.1 show implementation of corresponding
opposition-based initialization for the ODE. Follow-
ing steps show that procedure:

1. Random initialization of populationP (NP ),

2. Calculate opposite population by

OP i,j = aj + bj − Pi,j , (7)

Figure 1: Opposition-Based Differential Evolution
(ODE). Block (1): Opposition-based initialization,
Block (2): Opposition-based generation jumping
(Jr: jumping rate,rand(0, 1): uniformly generated
random number,Np: population size).

i = 1, 2, ..., Np ; j = 1, 2, ..., D,

where Pi,j andOP i,j denotejth variable of the
ith vector of the population and the opposite-
population, respectively.

3. Selecting theNp fittest individuals from{P ∪
OP} as initial population.

2.2.2 Opposition-Based Generation Jumping

By applying a similar approach to the current popula-
tion, the evolutionary process can be forced to jump
to a new solution candidate, which may be fitter than
the current one. Based on a jumping rateJr, after
generating new population by selection, crossover,
and mutation, the opposite population is calculated
and theNp fittest individuals are selected from the
union of the current population and the opposite pop-
ulation. As a difference to opposition-based initial-
ization, it should be noted here that in order to cal-
culate the opposite population for generation jump-
ing, the opposite of each variable is calculated dy-
namically. The maximum and minimum values of
each variable incurrent population([MINp

j , MAX p
j ])
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are used to calculate opposite points instead of using
variables’ predefined interval boundaries ([aj , bj ]):

OPi,j = MINp
j + MAX p

j − Pi,j , (8)

i = 1, 2, ..., Np ; j = 1, 2, ..., D.

The dynamic opposition increases the chance to
find fitter opposite points, so it helps in fine tun-
ing. By staying within variables’ interval static
boundaries, we would jump outside of the shrunken
solution space and the knowledge of current re-
duced space (converged population) would not be
utilized. Hence, we calculate opposite points by
using variables’ current interval in the popula-
tion ([MINp

j , MAX p
j ]) which is, as the search does

progress, increasingly smaller than the correspond-
ing initial range[aj , bj ]. Block (2) in Fig.1 shows
the implementation of opposition-based generation
jumping for the ODE. Our comprehensive experi-
ments show that jumping rateJr should be a small
number in(0, 0.4].

3 ODE vs. DE on Large Scale Mini-
mization Problems

In this section, DE and ODE are compared on a
large scale (D=500) minimization test suite in term
of solution accuracy. The utilized test suite contains
seven well-known unimodal and multi-modal func-
tions with separability and non-separability charac-
teristics in both modality groups.

3.1 Benchmark Functions

For comparison of DE and ODE, a recently proposed
benchmark test suite for the CEC-2008 Special Ses-
sion and Competition on Large Scale Global Opti-
mization [20] has been utilized. It includes two uni-
modal (F1-F2) and five multi-modal (F3-F7) func-
tions, among which four of them are non-separable
(F2, F3, F5, F7) and three are separable (F1, F4, F6).
Functions names and their properties are summa-
rized in Table 1. The mathematical definitions of
these functions are described in [20].

3.2 Parameter Settings

Parameter setting for all conducted experiments is as
follows:

• Dimension of the problems,D = 500 [20]

• Population size,Np = D [23, 16]

• Differential amplification factor,F = 0.5 [5, 7]

• Crossover probability constant,Cr = 0.9 [5, 7]

• Mutation strategy: DE/rand/1/bin (classical ver-
sion of DE) [12, 5, 7]

• Maximum number of function calls,
MAX NFC = 5000×D [20]

• Jumping rate constant (for ODE),Jr = 0.3 [5,
7]

All above mentioned settings are based on our or
colleagues’ previous works and so there has no new
attempts to obtain better values for them. In order
to maintain a reliable and fair comparison, these set-
tings are kept unchanged for all conducted experi-
ments for both algorithms.

3.3 Comparison Criteria

The conducted comparisons in this paper are based
on solution accuracy. The termination criteria is
set to reaching the maximum number of function
calls (5000× D = 2, 500, 000). In order to have
a clear vision on algorithm’s efficiency, the best,
median, worse, mean, standard deviation, and95%
confidential interval (95%CI) 2 of the error value
(f(x) − f(x∗), x∗: optimum vector) are computed
with respect to25 runs per function.

3.4 Numerical Results

Results for DE and ODE on seven functions are sum-
marized in Table 2. For each function, the best, me-
dian, worse, mean, standard deviation, and95% con-
fidential interval (95%CI) of the error value on25
runs are presented. The best result of each error mea-
sure is emphasized inboldface.

3.5 Result Analysis

As seen from Table 2, on all benchmark test func-
tions, ODE outperforms DE clearly. Although, for
functionsF2, F4, F6, andF7, DE presents a lower
standard deviation, but even for these functions re-
ported95% confidential intervals confirm that ODE
performs better. In fact, the smaller boundaries of
95% CI for ODE demonstrate this conclusion. That

2It shows that95% of the data appearances in this interval.
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Table 1: Benchmark functions. All of them are scalable, shifted, and500-dimensional.

Function Name Properties Search Space

F1 Shifted Sphere Function Unimodal, Separable [−100, 100]500

F2 Shifted Schwefels Problem 2.21 Unimodal, Non-separable [−100, 100]500

F3 Shifted Rosenbrocks Function Multi-modal, Non-separable, A narrow valley from local optimum to global optimum[−100, 100]500

F4 Shifted Rastrigins Function Multi-modal, Separable, Huge number of local optima [−5, 5]500

F5 Shifted Griewanks Function Multi-modal, Non-separable [−600, 600]500

F6 Shifted Ackleys Function Multi-modal, Separable [−32, 32]500

F7 FastFractal DoubleDip Function Multi-modal, Non-separable [−1, 1]500

is valuable to mention, except forF6, on all func-
tions, a big difference between DE and ODE’s results
is recognizable.

As mentioned before, our test suite contains
shifted unimodal, multi-modal (with huge number
of optima), scalable, separable, and non-separable
functions; so according to the obtained results that
is possible to say ODE presents evidences to per-
form better than DE (parent algorithm) on large scale
problems.

4 Conclusion

Before the current work, the performance of ODE
on large scale problems has not been investigated.
So, it was interesting to have a performance study
by an accepted high dimensional test suite. The
achieved results are promising because ODE outper-
forms DE on all seven test functions. We propose
that other DE-based approaches, which are used to
tackle large scale problems, may investigate replac-
ing DE by ODE.

Proposing a cooperative coevolutionary ODE
(CCODE) and also studying of ODE’s jumping rate
for large scale optimization build our directions for
the future work.
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