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Abstract— The particle swarm optimization (PSO) 

algorithm has been very successful in single objective 

optimization as well as in multi-objective (MO) 

optimization. However, the selection of representative 

leaders in MO space is a challenging task. Most previous 

MO-based PSOs used exclusively the concept of non-

dominance to select leaders which might slow down the 

search process if the selected leaders are concentrated in a 

specific region of the objective space. In this paper, a new 

restriction mechanism is added to non-dominance in order 

to select leaders in more representative (distributed) way. 

The proposed algorithm is named leaders and speed 

constrained multi-objective PSO (LSMPSO) which is an 

extended version of SMPSO. The convergence speed of 

LSMPSO is compared to state-of-the-art metaheuristics, 

namely, NSGA-II, SPEA2, GDE3, SMPSO, AbYSS, 

MOCell, and MOEA/D. The ZDT and DTLZ family 

problems are utilized for the comparisons. The proposed 

LSMPSO algorithm outperformed the other algorithms in 

terms of convergence speed. 

Keywords — Multi-Objective Optimization, Particle Swarm 

Optimization, PSO, Metaheuristics, Evolutionary Algorithms.  

I. INTRODUCTION 

PSO is a nature inspired metaheuristics simulating the 

social behavior of a flock of birds. Originally, it was proposed 

by Kennedy and Eberhart [1] in 1995. Since then, over 30 

multi-objective variants of PSO have been proposed [2]. 

However, the most salient variant is SMPSO [2]. SMPSO is 

an extension of OMOPSO [3]. Its main difference with respect 

to OMOPSO is the incorporation of a mechanism for velocity 

limitation and introducing a polynomial mutation operator.  

SMPSO has shown a high accuracy for MO optimization 

problems as in Ref. [2] and a high convergence speed as in 

Ref. [4]. In PSOs, the movement of candidate solutions, called 

particles, is influenced by the leaders. However, our 

observations show that if the leaders are not appropriately 

selected, the swarms might be attracted by a concentration of 

leaders in a certain region of the objective space. 

Consequently, the entire particles movement will prematurely 

converge towards a specific objective space region where 

these groups of leaders are located. Additional computational 

overhead would be required to find the entire Pareto front. 

In order to maintain an appropriate distribution of the 

particles, especially during the early stages of the search 

process (i.e., exploration), it is proposed to select a more 

representative group of leaders. Let us call this group deputes. 

This number of deputes is restricted and they should be more 

representative of the swarms by being more diverse (well-

distributed). The selection of leaders is performed by a non-

dominance concept. Then, it is proposed to select deputes using 

the sum of weighted ratios (SWR).  

In this paper, the convergence speed of the proposed 

algorithm, LSMPSO, is compared to seven state-of-the-art MO 

metaheuristics including its parent algorithm SMPSO. For 

comparison purposes, two well-known problem families, the 

Zitzler-Deb-Thiele (ZDT) [5] and the Deb-Thiele-Laumanns-

Zitzler (DTLZ) [6], are used for a total of 12 benchmark 

functions. The hypervolume (HV) indicator [7] is employed as 

a stopping criterion. When the HV of a solution set is equal or 

above 98% of the true Pareto front, then the front can be 

considered an accurate approximation of the real Pareto front. 

Consequently, the stopping condition is fixed to HV ≥ 98% or 

when reaching a maximum number of function calls (i.e. 10
6
). 

These termination criteria are commonly used in the literature 

(e.g. Ref. [8]). Every MO optimization algorithm was 

independently executed 100 times per problem to minimize the 

effect of the stochastic nature of the metaheuristics on the 

results. The metaheuristic requiring the lower number of 
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function calls to find an accurate approximation of the Pareto 

front is considered as the fastest algorithm. Also, the hit 

(success) rate  should be of 100% otherwise the algorithm is 

disqualified for that specific problem. The hit rate means how 

many times the algorithm was able to find (approximate with 

HV ≥ 98%) the real Pareto front before meeting the predefined 

maximum number of function calls.  

The reminder of this paper is organized as follows. Section 

II describes the proposed algorithm LSMPSO. Section III 

provides details about the experiment settings such as the 

conducted comparisons with the selected optimization 

algorithms, the studied problems and others. Section IV 

presents the results. Finally, Section V concludes the paper. 

II. LITTERATURE REVIEW 

This section describes the most recent PSO-based multi-

objective algorithms which focused on the leaders selection. 

By recent studies, it is meant after the development of 

OMOPSO, namely the parent algorithm of SMPSO. Earlier 

surveys about MO PSO can be found for example in Ref. [9]. 

In Ref. [10], it is proposed to hybridize PSO with 

differential evolution (DE).  PSO is served to accelerate the 

convergence speed whereas DE mutation properties are used 

for diversity maintenance. The selection of leaders is done 

using the non-dominance scheme. Then, the centroid point of 

leaders is calculated and a roulette wheel mechanism is used to 

select leaders. The probability of a leader to be selected is 

proportional to the distance from the centroid; the further a 

leader is from the centroid point, the higher are the chances to 

be selected to encourage diversity. The proposed algorithm was 

compared with OMOPSO, SMPSO, NSGA-II and DEMO 

using the ZDT problems. Their proposed algorithm converged 

faster for two problems out of five, namely, ZDT1 and ZDT2. 

In Ref. [11], five leader selection strategies have been 

incorporated into a multi-objective PSO namely the random 

strategy, the sigma strategy, the nearest strategy, the grid 

strategy, and the non-dominated strategy. PSO with different 

strategies has been tested on the WFG family problem. The 

results showed that the non-dominance strategy generates the 

highest accuracy.  

Other leader selection methods have been investigated for 

many-objective optimization (> 3 objectives) problems such as 

in Ref. [12]. 

III. DESCRIPTION OF LSMPSO 

In order to understand better the purpose of the leaders 
selection process, consider the relationship among leaders and 
particles and how leaders influence particles in their 
movements. 

A. Velocity 

In PSO algorithms, a candidate solution to an optimization 

problem is called a particle. The entire population of particles 

is called a swarm. In single objective PSO, a particle ��� is 

updated at a generation t as follows. 

������ � ����� � 1� 
	������ (1) 

where the ������ is the particle’s velocity is calculated as 
follows, 

������ � 
. ����� � 1� 
 ��. ��. ����� � ���� 
 ��. ��. ����� � ����  (2) 

where ����  is the (local) best found candidate solution by the 

particle ���, ����  is the (global) best found particle in the entire 

swarm called leader, 
 is the particle inertia weight, which 
represents a trade-off between the global and local experiences, �� and �� are random variables in the range [0,1], and �� and �� are learning factors towards respectively the particle’s 
personal success and its neighbor’s success. 

B. Description of the proposed approach 

The main challenge of extending the PSO algorithm to MO 
space resides in the generalization of the concept of leader [3]. 
The most common approach consists in considering the non-
dominated solutions as leaders. If the number of leaders 
exceeds the maximum size of an archive, then the crowding 
factor is used as a second discriminant as in the NSGA-II 
archive [13].  As shown in Figure 1, the non-dominance 
discriminant can affect the distribution of the particles at early 
exploration stages. Sometimes, it is possible to have a 
concentration of leaders in a certain region of the function 
space; therefore, the entire swarm movement will 
predominantly affected by these leaders. The particles will be 
covering a certain portion of the Pareto front rather than the 
entire Pareto front (PF). Consequently, additional 
computational overhead would be required to find the 
remaining portion of the PF or worst the PF won’t be found 
because no leaders are located in the missing part of the PF.  

 

 

Figure 1: First Iteration for the ZDT 2 Problem - grey particles 

are leaders  

In order to maintain an appropriate distribution of the 
swarms, this paper proposes to use only p percent of the most 
representative leaders during the entire search process. 
Restricting the number of leaders discourages leaders 
concentrated in the same function space area to influence the 
swarm movement. In order to select a "good" leaders 
representation, it is proposed to use the sum of weighted ratios 
(SWR) explained in the next sub-section.  

909

Administrator
Highlight



1: initializeSwarm() 

2: initializeLeadersArchive() 

3: generation = 0 

4: while generation < maxGenerations do 

5:     computeSpeed() // MODIFIED 

6:     updatePosition() // Eq. 1 

7:     mutation() // Turbulence 

8:     evaluation() 

9:     updateLeadersArchive() 

10:   updateParticlesMemory() 

11:   generation ++ 

12: end while 

13: returnLeadersArchive() 

 

Begin 

maxDeputies=%p * MaxArchiveSize; 

i=0; 

If (ArchiveSize == 1) // There only one leader 

Deputies=Leaders 

Else if (ArchiveSize  ≤ maxDeputies) 

      For each Leader  

If (Leader.F < 1.0 Or Leader.Crowding =                         

Infinity and Leader.F ≤ 1.0 ) 

 Deputies.add(Leader) 

EndIf 

endFor  

Else // ArchiveSize  > maxDeputies 

Sort (Leaders) // ascending sorting based on F 

While Deputies not full and still Leaders 

If (Leader.F < 1.0 Or Leader.Crowding =                         

Infinity and Leader.F ≤ 1.0 ) 

 Deputies.add(Leader) 

EndIf 

EndWhile 

endIF 

End 

C. Representative Non-Dominance Concept 

The SMPSO archive is the same archive used by NSGA-II 
which is also commonly used by other MO metaheuristics. 
However, the proposed archive selects a more representative 
number of leaders using SWR for the calculation of particle 
velocity. In SMPSO, at every iteration, two leaders are selected 
randomly. Then, the less crowded between the two leaders is 
selected for the calculation of the particle velocity. For the 
proposed LSMPSO algorithm, only the speed computation 
function will be modified by restricting the leaders that can 
influence the swarm movement. Only p% of the most 
representative leaders, let us call them deputy leaders, are 
selected first as described in the next sub-section. Then at 
every iteration, a deputy leader is selected randomly for the 
calculation of the swarm velocity. 

For better clarity, the pseudocode of SMPSO is given 
bellow.  

SMPSO PSEUDOCODE 

D. Selection Scheme of Deputy Leaders 

The selection of deputy leaders is based on the sum of 
weighted ratios (SWR). The fitness value of every objective 
(��) is converted into a ratio (��) between [0,1] as follows: 

�� � �� ��������� ����� 
where ���� and ����  are respectively the minimum and 
maximum values of the objective i.  

Then, the scaled fitness �� of the particle x is calculated by 
summing all ���: 

�� � ��!"� , � � 1,2, … , & 

where N is the number of objectives, and x is the current 
particle for which �� is calculated. 

Usually, for a lower ��, the closer is the point to the Pareto 
front. The lower values are selected rather than the larger 
among the leaders to promote a good distribution of solutions. 
The Fitness value for the extreme points of the front is set 
usually to 1.0. Therefore, they are always kept among deputy 
leaders.   

At every iteration before the calculation of the particles’ 
velocity, the SWR of the leaders is calculated. Then, the deputy 
leaders are determined as shown in the following deputy 
selection pseudocode. 

DEPUTES SELECTION PSEUDOCODE 
 

To clarify the proposed approach, assume there are eight 
leaders as described in TABLE 1.  

TABLE 1: EXAMPLE OF EIGHT LEADERS IN TWO-OBJECTIVE SPACE 

Objective 1 Objective 2 F 

2.2109 15.989 1.0 

3.7248 13.997 0.9681 

5.5071 9.3777 0.7640 

9.0128 6.2587 0.7997 

10.749 4.4470 0.7978 

12.0744 3.7935 0.8498 

13.6567 3.2865 0.9319 

15.4774 2.3427 1.0 

 
The same leaders are plotted in FIGURE 2. Let us assume 

that only four deputies can be selected from the leaders. See 
TABLE 1. To clarify the proposed approach, assume there are 
eight leaders as described in TABLE 1.  

TABLE 1 values in bold show two leaders having the lowest 
fitness value and two extreme leaders are selected. These 
deputies are represented in the graph with plain points whereas 
the other leaders are represented with empty points. It can be 
seen that the selected deputies represent well the full spectrum 
of the leaders. In addition, it can be seen that there is no 
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concentration of leaders in a specific region of the objective 
space which might influence the particles movement. 

 

FIGURE 2: EXAMPLE OF FOUR SELECTED DEPUTIES BASED ON SWR 

IV. EXPERIMENT SETTINGS 

A. Benchmark Problems 

As shown in Table 2, two well-known families of problems 

are used for comparison purposes: the ZDT [5] and the DTLZ 

[7] family problems. These two families are the most 

commonly used families. They are composed of different PF 

geometries, namely, convex, concave, disconnected, linear, 

and non-uniformly spaced. 

B. Comparison with MO Optimization Algorithms 

The proposed LSMPSO is compared with seven state-of-

the-art MOO metaheuristics which are described in this 

subsection. The implmentation of thse state-of-the-art 

algorithms is available in the jMetal [14] multi-objective 

optimization framework which has been used for conducting 

all the experiments in this paper. 

The Non-dominated Sorting Genetic Algorithm (NSGA-II) 

was proposed by Deb et al. [15] in 2002. This genetic 

algorithm consists of generating new populations from the 

original population by the use of classical genetic operators 

such as selection, crossover, and mutation. The individuals of 

the two populations are sorted according to their ranking. 

Then, the best solutions are recombined for the generation of 

the next population. In the case of having solutions with the 

same rank, a density estimation (crowding distance) is 

calculated with regards to the surrounding solutions for the 

selection of the most promising solutions.  

The Strength Pareto Evolutionary Algorithm (SPEA2) was 

proposed by Zitzler et al. [16] in 2002. In this MOEA, every 

candidate solution has a fitness value which equals the sum of 

its strength raw fitness (solutions that dominates it) plus a 

density estimation. SPEA2 uses the selection, crossover, and 

mutation operators for generating an archive of individuals. 

The non-dominated solutions of both the original population 

and the archive are copied into a new population. In case the 

number of non-dominated solutions is superior to the 

population size, a truncation operator is used by calculating 

the distances among solutions. The most similar solutions are 

removed. 

Table 2: Utilized Bi-Objective Problems in comparison study 

Problem Number 

Variables 

Geometries 

ZDT1 30 Convex 

ZDT2 30 Concave 

ZDT3 30 Convex, disconnected 

ZDT4 10 Convex 

ZDT6 10 Concave, non-uniformly spaced 

DTLZ1 7 Linear 

DTLZ2 12 Concave 

DTLZ3 12 Concave 

DTLZ4 12 Concave 

DTLZ5 12 Concave 

DTLZ6 12 Concave 

DTLZ7 22 Disconnected 

 

The Speed Constrained Particle Swarm Optimization 

(SMPSO) algorithm, which is the parent algorithm of 

LSMPSO, was proposed by Nebro et al. [17] in 2009. It is a 

particle swarm optimization algorithm for solving MOO 

problems. This approach is based on OMOPSO [3], whose 

main features  are the use of the crowding distance concept 

adopted by NSGA-II for filtering leader solutions that are 

stored in an archive, the use of mutation operators for swarm 

speed convergence acceleration, and the use of '-Dominace 

when generating new candidate solutions. Its main difference 

with respect to OMOPSO is that SMPSO incorporates a 

mechanism for velocity limitation and introduces a 

polynomial mutation operator. 

The third version of the Generalized Differential Evolution 

algorithm (GDE3) was proposed by Kukkonen and Lampinen 

[18]. GDE3 is an improved version of the GDE algorithm 

[19], which was originally proposed in 2005. It starts with a 

random solution population. In every iteration, a new 

offspring population is generated using the differential 

evolution operator. Both populations are combined; then, the 

size of the population is reduced using non-dominated sorting 

and a pruning algorithm for diversity preservation as in 

NSGA-II.  However, the GDE3 pruning algorithm modifies 

the NSGA-II crowding distance in order to solve some GDE3 

drawbacks when dealing with problems with more than two 

objectives. 

The cellular genetic algorithm (MOCell) was introduced by 

Nebro et al. [20] in 2006. Being a genetic algorithm, it uses 

selection, crossover, and mutation operators. Similar to many 

multi-objective metaheuristics, it includes an external archive 

for storing the non-dominated solutions discovered so far. 

This archive is bounded by using NSGA-II’s crowding 

distance in order to maintain diversity in the Pareto front. The 

selection is achieved by selecting a solution from the 

neighborhood of the current solution (called cell in cGAs) and 

another solution selected randomly from the archive. Then, the 

genetic crossover and mutation operators are applied for 

911



generating a new offspring which is compared to the current 

offspring. If the offspring is better, it replaces the current one. 

Otherwise, if both solutions are non-dominated, then the worst 

solution in the neighborhood is replaced by the current one 

and inserted into the archive. 

AbYSS was introduced by Nebro et al. [21] in 2008; it is a 

multi-objective version of a scatter search. It has an external 

archive similar to MoCell. AbYSS uses evolutionary operators 

such as polynomial mutation, binary crossover and solution 

combination.  

The Multi-objective Evolutionary Algorithm based on 

Decomposition (MOEA/D) [22] was proposed in 2007 and it 

consists of decomposing a MOO problem into scalar sub-

problems which are optimized in parallel. Each sub-problem is 

transformed into a scalar aggregation problem and optimized 

using only neighborhood information. These neighborhood 

relations are determined by the calculation of distances among 

coefficient vectors. 

C. Parameters Settings 

The parameter settings are the same for every MO 

metaheuristic. These parameter settings were taken from Ref. 

[9].  

TABLE 3: PARAMETERIZATION 

NSGA-II 

Population size 
Selection  of parents 

Recombination 

Mutation 

100 Individuals 
Binary tournament + binary tournament 

Simulated binary, pc   = 0.9 

Polynomial, pm   = 1.0/L 

SPEA2 

Population size 

Selection  of parents 

Recombination 
Mutation 

100 Individuals 

Binary tournament + binary tournament 

Simulated binary, pc   = 0.9 
Polynomial, pm   = 1.0/L 

MOCell 

Population size 

Neighborhood 
Selection  of parents 

Recombination 

Mutation 
Archive size 

100 individuals (10 × 10)  

1-hop neighbors (8 surrounding solutions) 
Binary tournament + binary tournament 

Simulated binary, pc   = 0.9 

Polynomial, pm   = 1.0/L 
100 individuals 

LSMPSO /  SMPSO 

Particles 

Mutation 
Leaders size 

100 particles 

Polynomial 
100 individuals 

GDE3 

Population size 

Recombination 

100 individuals 

Differential evolution,  
CR = 0.1, F  = 0.5 

MOEA/D 

Population size 

Recombination 
Mutation 

100 individuals 

Differential evolution,  
Polynomial 

AbYSS 

Population size 

Reference set size 
Recombination               

Mutation  

Archive size  

100 individuals  

10 + 10 
Simulated binary, pc   = 1.0 

Polynomial, pm   = 1.0/L 

100 individuals 

NSGA-II, SPEA2, MOCell, AbYSS and GDE3 and 

MOEA/D have a population size of 100. In the same manner, 

LSMPSO and SMPSO have a configuration of 100 particles.  

The metaheuristics having an archive such as NSGA-II, 

SPEA2 and others have also a maximum size of 100. 

In regards, to the number of deputes selected for LSMPSO, 

it is fixed to 10. In other words, only 10% of the maximum 

archive size is used as deputes leaders.  

The configuration parameters of the algorithms are shown 

in TABLE 3. 

D. Performance Measure 

A high quality set of solutions, in a multi-objective 

optimization context, should be accurate and diverse. 

Accuracy means the solutions should be as close as possible to 

the Pareto Front. Diversity means the solution should be well-

distributed to cover all of the Pareto Front. A popular quality 

indicator that takes into consideration both the accuracy of a 

solution set and its diversity is the hypervolume (HV) 

indicator [8].  The HV is obtained by computing the volume of 

the non-dominated set of solutions Q for MOO minimization 

problems. For every solution ( ∈ Q, a hypercube vi is 

generated with a reference point W and the solution i as its 

diagonal corner. The reference point W can be generated by 

building a vector of worst possible objective function values. 

Then, the HV is computed as a union of all in the hypercube 

as follows:  

*+ � �,-.�/	 0	1��|3|
�4�
	5 

For a lower HV value, the correspondent solutions are 

better because they are more precise and diverse. Given that 

the Pareto fronts of the problems used in this study are known 

beforehand, the algorithms are executed until sufficient 

approximation of the real Pareto fronts (HV ≥ 98%) as shown 

in Figure 3.  

 
Figure 3: PARETO FRONTS WITH DIFFERENT HYPERVOLUME 

VALUES OBTAINED FOR THE ZDT1 PROBLEM. 

Finding the Pareto front might not always be possible for 

some algorithms depending on the problem’s complexity. In 

other words, some algorithms might perform well with some 

specific problems, but not able to find the Pareto front for 

other types of problems. Or it might take too long to produce 

the Pareto front. Consequently, another stopping condition is 

added by allowing every metaheuristic to perform at most 10
6
 

function calls.  
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V. RESULTS 

Due the stochastic nature of metaheuristics, every algorithm 

was run 100 times independently. The results are reported in 

Table 4. The dark grey area shows the fastest algorithm, while 

the lighter grey shows the second fastest algorithm. 
The Wilcoxon statistical procedure is conducted based on 

Ref. [23] to present results at a 0.05 significance level. 
However, whenever the statistical test did not pass between the 
two fastest algorithms, both of them were ranked first. For 
example, for the problems ZDT3, ZDT4, ZDT6 and DTLZ1, 
there was not a significant statistical difference between the 
two fastest algorithms. So the two fastest MO metaheuristics 
were ranked first for these specific cases. 

The hit rates of the compared multi-objective optimization 
algorithms are shown in TABLE 5. A hit of 100% means that 
the multi-objective optimization algorithm was able to find an 
accurate approximation of the Pareto front (HV ≥ 98%) for 
every single run (100/100). A lower rate than 100 
automatically disqualifies the algorithm from the comparison 
process for that specific optimization problem. 

It can be seen in Table 4 that the proposed algorithm 
LSMPSO was the fastest algorithm among all the compared 
algorithms for 10/12 problems. The LSMPSO is the fastest 
algorithm for all ZDT and DTLZ problems except for the 
DTLZ4 and DTLZ6 problems. In addition, it achieved a hit 
rate of 100% for all the problems.  

When LSMPSO was compared to its parent algorithm, 
SMPSO, it is found that LSMPSO improved the convergence 
speed of SMPSO for 7 problems out of 12 namely for ZDT1, 
ZDT2, ZDT3, DTLZ2, DTLZ3, DTLZ5 and DTLZ7. 
LSMPSO had the same performance as SMPSO for the three 
problems ZDT4, ZDT6 and DTLZ1. LSMPSO presents a 
lower performance than SMPSO for only two problems 
DTLZ4 and DTLZ6. However, SMPSO was not the fastest 
algorithm for both DTLZ4 and DTLZ6 problems.  Overall, 
LSMPSO improved SMPSO 58.66% of the time, had the same 
fastest performance for 25%, and it had a lower performance 
that SMPSO for 16.33% of the time. It can be concluded that 
LSMPSO improved the SMPSO algorithm to become the 
fastest one while keeping a high accuracy in a consistent 
manner. 

The second performance was achieved by SMPSO. It was 
the fastest algorithm for three problems, namely ZDT4, ZDT6 
and DTLZ1 and the second fastest algorithm for six problems, 
namely ZDT1, ZDT2, DTLZ3, DTLZ4, DTLZ6 and DTLZ7. 
SMPSO had a hit rate of 100% for all problems. So, overall 
SMPSO offered good performance. 

The third performance was achieved by GDE3. It was the 
fastest algorithm only for two problems, ZDT3 and DTLZ6. 
And GDE3 had a hite rate of 100% for all the problems. So, 
overall it had good performance except for the problems 
ZDT2, ZDT4 and DTLZ2 where GDE3 had serious difficulties 
as compared to the other fastest algorithms. 

 

Table 4: MEDIAN AND INTERQUARTILE RANGE (IQR) OF THE NUMBER OF EVALUATIONS FOR REACHING THE PARETO FRONT (HV ≥ 

98%). The dark grey area shows the fastest algorithm, while the lighter grey area shows the second fastest algorithm.  

 

TABLE 5: AVERAGE HIT RATE OF THE COMPARED MO OPTIMZATION ALGORITHMS 

It is worth to mention that only LSMPSO, SMPSO and 
GDE3 achieved a hit rate of 100% for all the compared 
problems. This demonstrates their consistency in the results as 
well as the robustness of these three algorithms 

AbYSS comes in fourth position. AbYSS has been the 
fastest optimization algorithm for the DTLZ4 problem and the 

second fastest for two problems, namely, DTLZ2 and DTLZ5. 
However, AbYSS had difficulties with DTLZ6 and especially 
with DTLZ7 by having a hit rate equal to only 1%. 

In order to rank the remaining multi-objective optimization 

algorithms, the boxplots [24] are used. The boxplots allow a 

graphical analysis of the found solutions using five number 
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summaries: the minimum, lower quartile (Q1), median (Q2), 

upper quartile (Q3), and the maximum. Also, boxplots 

indicate solutions as outliers, i.e., a solution that is 

numerically distant from the rest of the data. Also, the 

boxplots allow one to see the consistency of the results by 

examining graphically the IQR. 

The boxplot results are compiled in Figure 4 for ZDT 

family problems and in Figure 5 for DTLZ family problems. It 

can be seen from the boxplots that MOCell achieves usually 

the fourth performance most of the time, followed by NSGA-

II, followed by SPEA2, and followed finally by MOEA/D. 

 

Figure 4: Boxplots for ZDT problems 

MOEA/D achieved a low hit rate only for one problem 

whereas the NSGA-II and SPEA2 algorithms achieved a low 

rate for two problems and MoCell achieved a low rate for 

three problems. 

By examining the boxplots, another interesting observation 

is that the proposed algorithm, LSMPSO, has consistent 

performance most of that time better that its parent algorithm 

SMPSO. However, GDE3 achieved the highest consistency in 

the results. It might be interesting to analyze why GDE3 has a 

higher consistency in comparison with the other algorithms. 

By this way LSMPSO could be further enhanced not only to 

be the fastest one but with more consistent results. 

VI. CONCLUSIONS 

This paper proposed a new multi-objective version of 

particle swarm optimization in order to accelerate its 

convergence speed. The proposed algorithm called LSMPSO 

incorporated a restriction mechanism on the leaders that can 

be used for the particle velocity calculation. Only the p% most 

representative leaders called deputies are selected, using the 

SWR algorithm, for the particles velocity calculation. The 

proposed algorithm was compared to seven state-of-the-art 

metaheuristics, namely, NSGA-II, SPEA2, GDE3, SMPSO, 

AbYSS, MOCell and MOEA/D using the ZDT and DTLZ bi-

objective family problems. The convergence speed of these 

algorithms was compared by counting the number of function 

calls required to find an accurate approximate of the Pareto 

front (HV≥98%) with a maximum of 10
6 

function calls 

allowed.  

 

Figure 5: Boxplots for DTLZ Problems 

The proposed LSMPSO algorithm was overall the fastest 

algorithm to find an accurate approximate of the Pareto front 

for 10 of 12 problems. In addition to its high convergence 

speed, LSMPSO achieved a hit rate of 100% for all the studied 

problems.  
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