
Leaders and Speed Constraint Multi-Objective

Particle Swarm Optimization

Farid Bourennani

Department of Electrical, Computer and Software Engineering

University of Ontario Institute of Technology

Oshawa, Ontario, Canada

farid.bourennani@uoit.ca

Shahryar Rahnamayan

Department of Electrical, Computer and Software Engineering

University of Ontario Institute of Technology

Oshawa, Ontario, Canada

Greg F. Naterer

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

St. John's, Newfoundland, Canada

Abstract— The particle swarm optimization (PSO)

algorithm has been very successful in single objective

optimization as well as in multi-objective (MO)

optimization. However, the selection of representative

leaders in MO space is a challenging task. Most previous

MO-based PSOs used exclusively the concept of non-

dominance to select leaders which might slow down the

search process if the selected leaders are concentrated in a

specific region of the objective space. In this paper, a new

restriction mechanism is added to non-dominance in order

to select leaders in more representative (distributed) way.

The proposed algorithm is named leaders and speed

constrained multi-objective PSO (LSMPSO) which is an

extended version of SMPSO. The convergence speed of

LSMPSO is compared to state-of-the-art metaheuristics,

namely, NSGA-II, SPEA2, GDE3, SMPSO, AbYSS,

MOCell, and MOEA/D. The ZDT and DTLZ family

problems are utilized for the comparisons. The proposed

LSMPSO algorithm outperformed the other algorithms in

terms of convergence speed.

Keywords — Multi-Objective Optimization, Particle Swarm

Optimization, PSO, Metaheuristics, Evolutionary Algorithms.

I. INTRODUCTION

PSO is a nature inspired metaheuristics simulating the

social behavior of a flock of birds. Originally, it was proposed

by Kennedy and Eberhart [1] in 1995. Since then, over 30

multi-objective variants of PSO have been proposed [2].

However, the most salient variant is SMPSO [2]. SMPSO is

an extension of OMOPSO [3]. Its main difference with respect

to OMOPSO is the incorporation of a mechanism for velocity

limitation and introducing a polynomial mutation operator.

SMPSO has shown a high accuracy for MO optimization

problems as in Ref. [2] and a high convergence speed as in

Ref. [4]. In PSOs, the movement of candidate solutions, called

particles, is influenced by the leaders. However, our

observations show that if the leaders are not appropriately

selected, the swarms might be attracted by a concentration of

leaders in a certain region of the objective space.

Consequently, the entire particles movement will prematurely

converge towards a specific objective space region where

these groups of leaders are located. Additional computational

overhead would be required to find the entire Pareto front.

In order to maintain an appropriate distribution of the

particles, especially during the early stages of the search

process (i.e., exploration), it is proposed to select a more

representative group of leaders. Let us call this group deputes.

This number of deputes is restricted and they should be more

representative of the swarms by being more diverse (well-

distributed). The selection of leaders is performed by a non-

dominance concept. Then, it is proposed to select deputes using

the sum of weighted ratios (SWR).

In this paper, the convergence speed of the proposed

algorithm, LSMPSO, is compared to seven state-of-the-art MO

metaheuristics including its parent algorithm SMPSO. For

comparison purposes, two well-known problem families, the

Zitzler-Deb-Thiele (ZDT) [5] and the Deb-Thiele-Laumanns-

Zitzler (DTLZ) [6], are used for a total of 12 benchmark

functions. The hypervolume (HV) indicator [7] is employed as

a stopping criterion. When the HV of a solution set is equal or

above 98% of the true Pareto front, then the front can be

considered an accurate approximation of the real Pareto front.

Consequently, the stopping condition is fixed to HV ≥ 98% or

when reaching a maximum number of function calls (i.e. 10
6
).

These termination criteria are commonly used in the literature

(e.g. Ref. [8]). Every MO optimization algorithm was

independently executed 100 times per problem to minimize the

effect of the stochastic nature of the metaheuristics on the

results. The metaheuristic requiring the lower number of

This work was supported in part by an Ontario Graduate Scholarship (OGS).

2013 IEEE Congress on Evolutionary Computation
 June 20-23, Cancún, México

978-1-4799-0454-9/13/$31.00 ©2013 IEEE 908

function calls to find an accurate approximation of the Pareto

front is considered as the fastest algorithm. Also, the hit

(success) rate should be of 100% otherwise the algorithm is

disqualified for that specific problem. The hit rate means how

many times the algorithm was able to find (approximate with

HV ≥ 98%) the real Pareto front before meeting the predefined

maximum number of function calls.

The reminder of this paper is organized as follows. Section

II describes the proposed algorithm LSMPSO. Section III

provides details about the experiment settings such as the

conducted comparisons with the selected optimization

algorithms, the studied problems and others. Section IV

presents the results. Finally, Section V concludes the paper.

II. LITTERATURE REVIEW

This section describes the most recent PSO-based multi-

objective algorithms which focused on the leaders selection.

By recent studies, it is meant after the development of

OMOPSO, namely the parent algorithm of SMPSO. Earlier

surveys about MO PSO can be found for example in Ref. [9].

In Ref. [10], it is proposed to hybridize PSO with

differential evolution (DE). PSO is served to accelerate the

convergence speed whereas DE mutation properties are used

for diversity maintenance. The selection of leaders is done

using the non-dominance scheme. Then, the centroid point of

leaders is calculated and a roulette wheel mechanism is used to

select leaders. The probability of a leader to be selected is

proportional to the distance from the centroid; the further a

leader is from the centroid point, the higher are the chances to

be selected to encourage diversity. The proposed algorithm was

compared with OMOPSO, SMPSO, NSGA-II and DEMO

using the ZDT problems. Their proposed algorithm converged

faster for two problems out of five, namely, ZDT1 and ZDT2.

In Ref. [11], five leader selection strategies have been

incorporated into a multi-objective PSO namely the random

strategy, the sigma strategy, the nearest strategy, the grid

strategy, and the non-dominated strategy. PSO with different

strategies has been tested on the WFG family problem. The

results showed that the non-dominance strategy generates the

highest accuracy.

Other leader selection methods have been investigated for

many-objective optimization (> 3 objectives) problems such as

in Ref. [12].

III. DESCRIPTION OF LSMPSO

In order to understand better the purpose of the leaders
selection process, consider the relationship among leaders and
particles and how leaders influence particles in their
movements.

A. Velocity

In PSO algorithms, a candidate solution to an optimization

problem is called a particle. The entire population of particles

is called a swarm. In single objective PSO, a particle ��� is

updated at a generation t as follows.

������ � ����� � 1�
	������ (1)

where the ������ is the particle’s velocity is calculated as
follows,

������ �
. ����� � 1�
 ��. ��. ����� � ����
 ��. ��. ����� � ���� (2)

where ���� is the (local) best found candidate solution by the

particle ���, ���� is the (global) best found particle in the entire

swarm called leader,
 is the particle inertia weight, which
represents a trade-off between the global and local experiences, �� and �� are random variables in the range [0,1], and �� and �� are learning factors towards respectively the particle’s
personal success and its neighbor’s success.

B. Description of the proposed approach

The main challenge of extending the PSO algorithm to MO
space resides in the generalization of the concept of leader [3].
The most common approach consists in considering the non-
dominated solutions as leaders. If the number of leaders
exceeds the maximum size of an archive, then the crowding
factor is used as a second discriminant as in the NSGA-II
archive [13]. As shown in Figure 1, the non-dominance
discriminant can affect the distribution of the particles at early
exploration stages. Sometimes, it is possible to have a
concentration of leaders in a certain region of the function
space; therefore, the entire swarm movement will
predominantly affected by these leaders. The particles will be
covering a certain portion of the Pareto front rather than the
entire Pareto front (PF). Consequently, additional
computational overhead would be required to find the
remaining portion of the PF or worst the PF won’t be found
because no leaders are located in the missing part of the PF.

Figure 1: First Iteration for the ZDT 2 Problem - grey particles

are leaders

In order to maintain an appropriate distribution of the
swarms, this paper proposes to use only p percent of the most
representative leaders during the entire search process.
Restricting the number of leaders discourages leaders
concentrated in the same function space area to influence the
swarm movement. In order to select a "good" leaders
representation, it is proposed to use the sum of weighted ratios
(SWR) explained in the next sub-section.

909

Administrator
Highlight

1: initializeSwarm()

2: initializeLeadersArchive()

3: generation = 0

4: while generation < maxGenerations do

5: computeSpeed() // MODIFIED

6: updatePosition() // Eq. 1

7: mutation() // Turbulence

8: evaluation()

9: updateLeadersArchive()

10: updateParticlesMemory()

11: generation ++

12: end while

13: returnLeadersArchive()

Begin

maxDeputies=%p * MaxArchiveSize;

i=0;

If (ArchiveSize == 1) // There only one leader

Deputies=Leaders

Else if (ArchiveSize ≤ maxDeputies)

 For each Leader

If (Leader.F < 1.0 Or Leader.Crowding =

Infinity and Leader.F ≤ 1.0)

 Deputies.add(Leader)

EndIf

endFor

Else // ArchiveSize > maxDeputies

Sort (Leaders) // ascending sorting based on F

While Deputies not full and still Leaders

If (Leader.F < 1.0 Or Leader.Crowding =

Infinity and Leader.F ≤ 1.0)

 Deputies.add(Leader)

EndIf

EndWhile

endIF

End

C. Representative Non-Dominance Concept

The SMPSO archive is the same archive used by NSGA-II
which is also commonly used by other MO metaheuristics.
However, the proposed archive selects a more representative
number of leaders using SWR for the calculation of particle
velocity. In SMPSO, at every iteration, two leaders are selected
randomly. Then, the less crowded between the two leaders is
selected for the calculation of the particle velocity. For the
proposed LSMPSO algorithm, only the speed computation
function will be modified by restricting the leaders that can
influence the swarm movement. Only p% of the most
representative leaders, let us call them deputy leaders, are
selected first as described in the next sub-section. Then at
every iteration, a deputy leader is selected randomly for the
calculation of the swarm velocity.

For better clarity, the pseudocode of SMPSO is given
bellow.

SMPSO PSEUDOCODE

D. Selection Scheme of Deputy Leaders

The selection of deputy leaders is based on the sum of
weighted ratios (SWR). The fitness value of every objective
(��) is converted into a ratio (��) between [0,1] as follows:

�� � �� ��������� �����
where ���� and ���� are respectively the minimum and
maximum values of the objective i.

Then, the scaled fitness �� of the particle x is calculated by
summing all ���:

�� � ��!"� , � � 1,2, … , &

where N is the number of objectives, and x is the current
particle for which �� is calculated.

Usually, for a lower ��, the closer is the point to the Pareto
front. The lower values are selected rather than the larger
among the leaders to promote a good distribution of solutions.
The Fitness value for the extreme points of the front is set
usually to 1.0. Therefore, they are always kept among deputy
leaders.

At every iteration before the calculation of the particles’
velocity, the SWR of the leaders is calculated. Then, the deputy
leaders are determined as shown in the following deputy
selection pseudocode.

DEPUTES SELECTION PSEUDOCODE

To clarify the proposed approach, assume there are eight
leaders as described in TABLE 1.

TABLE 1: EXAMPLE OF EIGHT LEADERS IN TWO-OBJECTIVE SPACE

Objective 1 Objective 2 F

2.2109 15.989 1.0

3.7248 13.997 0.9681

5.5071 9.3777 0.7640

9.0128 6.2587 0.7997

10.749 4.4470 0.7978

12.0744 3.7935 0.8498

13.6567 3.2865 0.9319

15.4774 2.3427 1.0

The same leaders are plotted in FIGURE 2. Let us assume

that only four deputies can be selected from the leaders. See
TABLE 1. To clarify the proposed approach, assume there are
eight leaders as described in TABLE 1.

TABLE 1 values in bold show two leaders having the lowest
fitness value and two extreme leaders are selected. These
deputies are represented in the graph with plain points whereas
the other leaders are represented with empty points. It can be
seen that the selected deputies represent well the full spectrum
of the leaders. In addition, it can be seen that there is no

910

concentration of leaders in a specific region of the objective
space which might influence the particles movement.

FIGURE 2: EXAMPLE OF FOUR SELECTED DEPUTIES BASED ON SWR

IV. EXPERIMENT SETTINGS

A. Benchmark Problems

As shown in Table 2, two well-known families of problems

are used for comparison purposes: the ZDT [5] and the DTLZ

[7] family problems. These two families are the most

commonly used families. They are composed of different PF

geometries, namely, convex, concave, disconnected, linear,

and non-uniformly spaced.

B. Comparison with MO Optimization Algorithms

The proposed LSMPSO is compared with seven state-of-

the-art MOO metaheuristics which are described in this

subsection. The implmentation of thse state-of-the-art

algorithms is available in the jMetal [14] multi-objective

optimization framework which has been used for conducting

all the experiments in this paper.

The Non-dominated Sorting Genetic Algorithm (NSGA-II)

was proposed by Deb et al. [15] in 2002. This genetic

algorithm consists of generating new populations from the

original population by the use of classical genetic operators

such as selection, crossover, and mutation. The individuals of

the two populations are sorted according to their ranking.

Then, the best solutions are recombined for the generation of

the next population. In the case of having solutions with the

same rank, a density estimation (crowding distance) is

calculated with regards to the surrounding solutions for the

selection of the most promising solutions.

The Strength Pareto Evolutionary Algorithm (SPEA2) was

proposed by Zitzler et al. [16] in 2002. In this MOEA, every

candidate solution has a fitness value which equals the sum of

its strength raw fitness (solutions that dominates it) plus a

density estimation. SPEA2 uses the selection, crossover, and

mutation operators for generating an archive of individuals.

The non-dominated solutions of both the original population

and the archive are copied into a new population. In case the

number of non-dominated solutions is superior to the

population size, a truncation operator is used by calculating

the distances among solutions. The most similar solutions are

removed.

Table 2: Utilized Bi-Objective Problems in comparison study

Problem Number

Variables

Geometries

ZDT1 30 Convex

ZDT2 30 Concave

ZDT3 30 Convex, disconnected

ZDT4 10 Convex

ZDT6 10 Concave, non-uniformly spaced

DTLZ1 7 Linear

DTLZ2 12 Concave

DTLZ3 12 Concave

DTLZ4 12 Concave

DTLZ5 12 Concave

DTLZ6 12 Concave

DTLZ7 22 Disconnected

The Speed Constrained Particle Swarm Optimization

(SMPSO) algorithm, which is the parent algorithm of

LSMPSO, was proposed by Nebro et al. [17] in 2009. It is a

particle swarm optimization algorithm for solving MOO

problems. This approach is based on OMOPSO [3], whose

main features are the use of the crowding distance concept

adopted by NSGA-II for filtering leader solutions that are

stored in an archive, the use of mutation operators for swarm

speed convergence acceleration, and the use of '-Dominace

when generating new candidate solutions. Its main difference

with respect to OMOPSO is that SMPSO incorporates a

mechanism for velocity limitation and introduces a

polynomial mutation operator.

The third version of the Generalized Differential Evolution

algorithm (GDE3) was proposed by Kukkonen and Lampinen

[18]. GDE3 is an improved version of the GDE algorithm

[19], which was originally proposed in 2005. It starts with a

random solution population. In every iteration, a new

offspring population is generated using the differential

evolution operator. Both populations are combined; then, the

size of the population is reduced using non-dominated sorting

and a pruning algorithm for diversity preservation as in

NSGA-II. However, the GDE3 pruning algorithm modifies

the NSGA-II crowding distance in order to solve some GDE3

drawbacks when dealing with problems with more than two

objectives.

The cellular genetic algorithm (MOCell) was introduced by

Nebro et al. [20] in 2006. Being a genetic algorithm, it uses

selection, crossover, and mutation operators. Similar to many

multi-objective metaheuristics, it includes an external archive

for storing the non-dominated solutions discovered so far.

This archive is bounded by using NSGA-II’s crowding

distance in order to maintain diversity in the Pareto front. The

selection is achieved by selecting a solution from the

neighborhood of the current solution (called cell in cGAs) and

another solution selected randomly from the archive. Then, the

genetic crossover and mutation operators are applied for

911

generating a new offspring which is compared to the current

offspring. If the offspring is better, it replaces the current one.

Otherwise, if both solutions are non-dominated, then the worst

solution in the neighborhood is replaced by the current one

and inserted into the archive.

AbYSS was introduced by Nebro et al. [21] in 2008; it is a

multi-objective version of a scatter search. It has an external

archive similar to MoCell. AbYSS uses evolutionary operators

such as polynomial mutation, binary crossover and solution

combination.

The Multi-objective Evolutionary Algorithm based on

Decomposition (MOEA/D) [22] was proposed in 2007 and it

consists of decomposing a MOO problem into scalar sub-

problems which are optimized in parallel. Each sub-problem is

transformed into a scalar aggregation problem and optimized

using only neighborhood information. These neighborhood

relations are determined by the calculation of distances among

coefficient vectors.

C. Parameters Settings

The parameter settings are the same for every MO

metaheuristic. These parameter settings were taken from Ref.

[9].

TABLE 3: PARAMETERIZATION

NSGA-II

Population size
Selection of parents

Recombination

Mutation

100 Individuals
Binary tournament + binary tournament

Simulated binary, pc = 0.9

Polynomial, pm = 1.0/L

SPEA2

Population size

Selection of parents

Recombination
Mutation

100 Individuals

Binary tournament + binary tournament

Simulated binary, pc = 0.9
Polynomial, pm = 1.0/L

MOCell

Population size

Neighborhood
Selection of parents

Recombination

Mutation
Archive size

100 individuals (10 × 10)

1-hop neighbors (8 surrounding solutions)
Binary tournament + binary tournament

Simulated binary, pc = 0.9

Polynomial, pm = 1.0/L
100 individuals

LSMPSO / SMPSO

Particles

Mutation
Leaders size

100 particles

Polynomial
100 individuals

GDE3

Population size

Recombination

100 individuals

Differential evolution,
CR = 0.1, F = 0.5

MOEA/D

Population size

Recombination
Mutation

100 individuals

Differential evolution,
Polynomial

AbYSS

Population size

Reference set size
Recombination

Mutation

Archive size

100 individuals

10 + 10
Simulated binary, pc = 1.0

Polynomial, pm = 1.0/L

100 individuals

NSGA-II, SPEA2, MOCell, AbYSS and GDE3 and

MOEA/D have a population size of 100. In the same manner,

LSMPSO and SMPSO have a configuration of 100 particles.

The metaheuristics having an archive such as NSGA-II,

SPEA2 and others have also a maximum size of 100.

In regards, to the number of deputes selected for LSMPSO,

it is fixed to 10. In other words, only 10% of the maximum

archive size is used as deputes leaders.

The configuration parameters of the algorithms are shown

in TABLE 3.

D. Performance Measure

A high quality set of solutions, in a multi-objective

optimization context, should be accurate and diverse.

Accuracy means the solutions should be as close as possible to

the Pareto Front. Diversity means the solution should be well-

distributed to cover all of the Pareto Front. A popular quality

indicator that takes into consideration both the accuracy of a

solution set and its diversity is the hypervolume (HV)

indicator [8]. The HV is obtained by computing the volume of

the non-dominated set of solutions Q for MOO minimization

problems. For every solution (∈ Q, a hypercube vi is

generated with a reference point W and the solution i as its

diagonal corner. The reference point W can be generated by

building a vector of worst possible objective function values.

Then, the HV is computed as a union of all in the hypercube

as follows:

*+ � �,-.�/	 0	1��|3|
�4�
	5

For a lower HV value, the correspondent solutions are

better because they are more precise and diverse. Given that

the Pareto fronts of the problems used in this study are known

beforehand, the algorithms are executed until sufficient

approximation of the real Pareto fronts (HV ≥ 98%) as shown

in Figure 3.

Figure 3: PARETO FRONTS WITH DIFFERENT HYPERVOLUME

VALUES OBTAINED FOR THE ZDT1 PROBLEM.

Finding the Pareto front might not always be possible for

some algorithms depending on the problem’s complexity. In

other words, some algorithms might perform well with some

specific problems, but not able to find the Pareto front for

other types of problems. Or it might take too long to produce

the Pareto front. Consequently, another stopping condition is

added by allowing every metaheuristic to perform at most 10
6

function calls.

912

V. RESULTS

Due the stochastic nature of metaheuristics, every algorithm

was run 100 times independently. The results are reported in

Table 4. The dark grey area shows the fastest algorithm, while

the lighter grey shows the second fastest algorithm.
The Wilcoxon statistical procedure is conducted based on

Ref. [23] to present results at a 0.05 significance level.
However, whenever the statistical test did not pass between the
two fastest algorithms, both of them were ranked first. For
example, for the problems ZDT3, ZDT4, ZDT6 and DTLZ1,
there was not a significant statistical difference between the
two fastest algorithms. So the two fastest MO metaheuristics
were ranked first for these specific cases.

The hit rates of the compared multi-objective optimization
algorithms are shown in TABLE 5. A hit of 100% means that
the multi-objective optimization algorithm was able to find an
accurate approximation of the Pareto front (HV ≥ 98%) for
every single run (100/100). A lower rate than 100
automatically disqualifies the algorithm from the comparison
process for that specific optimization problem.

It can be seen in Table 4 that the proposed algorithm
LSMPSO was the fastest algorithm among all the compared
algorithms for 10/12 problems. The LSMPSO is the fastest
algorithm for all ZDT and DTLZ problems except for the
DTLZ4 and DTLZ6 problems. In addition, it achieved a hit
rate of 100% for all the problems.

When LSMPSO was compared to its parent algorithm,
SMPSO, it is found that LSMPSO improved the convergence
speed of SMPSO for 7 problems out of 12 namely for ZDT1,
ZDT2, ZDT3, DTLZ2, DTLZ3, DTLZ5 and DTLZ7.
LSMPSO had the same performance as SMPSO for the three
problems ZDT4, ZDT6 and DTLZ1. LSMPSO presents a
lower performance than SMPSO for only two problems
DTLZ4 and DTLZ6. However, SMPSO was not the fastest
algorithm for both DTLZ4 and DTLZ6 problems. Overall,
LSMPSO improved SMPSO 58.66% of the time, had the same
fastest performance for 25%, and it had a lower performance
that SMPSO for 16.33% of the time. It can be concluded that
LSMPSO improved the SMPSO algorithm to become the
fastest one while keeping a high accuracy in a consistent
manner.

The second performance was achieved by SMPSO. It was
the fastest algorithm for three problems, namely ZDT4, ZDT6
and DTLZ1 and the second fastest algorithm for six problems,
namely ZDT1, ZDT2, DTLZ3, DTLZ4, DTLZ6 and DTLZ7.
SMPSO had a hit rate of 100% for all problems. So, overall
SMPSO offered good performance.

The third performance was achieved by GDE3. It was the
fastest algorithm only for two problems, ZDT3 and DTLZ6.
And GDE3 had a hite rate of 100% for all the problems. So,
overall it had good performance except for the problems
ZDT2, ZDT4 and DTLZ2 where GDE3 had serious difficulties
as compared to the other fastest algorithms.

Table 4: MEDIAN AND INTERQUARTILE RANGE (IQR) OF THE NUMBER OF EVALUATIONS FOR REACHING THE PARETO FRONT (HV ≥

98%). The dark grey area shows the fastest algorithm, while the lighter grey area shows the second fastest algorithm.

TABLE 5: AVERAGE HIT RATE OF THE COMPARED MO OPTIMZATION ALGORITHMS

It is worth to mention that only LSMPSO, SMPSO and
GDE3 achieved a hit rate of 100% for all the compared
problems. This demonstrates their consistency in the results as
well as the robustness of these three algorithms

AbYSS comes in fourth position. AbYSS has been the
fastest optimization algorithm for the DTLZ4 problem and the

second fastest for two problems, namely, DTLZ2 and DTLZ5.
However, AbYSS had difficulties with DTLZ6 and especially
with DTLZ7 by having a hit rate equal to only 1%.

In order to rank the remaining multi-objective optimization

algorithms, the boxplots [24] are used. The boxplots allow a

graphical analysis of the found solutions using five number

913

summaries: the minimum, lower quartile (Q1), median (Q2),

upper quartile (Q3), and the maximum. Also, boxplots

indicate solutions as outliers, i.e., a solution that is

numerically distant from the rest of the data. Also, the

boxplots allow one to see the consistency of the results by

examining graphically the IQR.

The boxplot results are compiled in Figure 4 for ZDT

family problems and in Figure 5 for DTLZ family problems. It

can be seen from the boxplots that MOCell achieves usually

the fourth performance most of the time, followed by NSGA-

II, followed by SPEA2, and followed finally by MOEA/D.

Figure 4: Boxplots for ZDT problems

MOEA/D achieved a low hit rate only for one problem

whereas the NSGA-II and SPEA2 algorithms achieved a low

rate for two problems and MoCell achieved a low rate for

three problems.

By examining the boxplots, another interesting observation

is that the proposed algorithm, LSMPSO, has consistent

performance most of that time better that its parent algorithm

SMPSO. However, GDE3 achieved the highest consistency in

the results. It might be interesting to analyze why GDE3 has a

higher consistency in comparison with the other algorithms.

By this way LSMPSO could be further enhanced not only to

be the fastest one but with more consistent results.

VI. CONCLUSIONS

This paper proposed a new multi-objective version of

particle swarm optimization in order to accelerate its

convergence speed. The proposed algorithm called LSMPSO

incorporated a restriction mechanism on the leaders that can

be used for the particle velocity calculation. Only the p% most

representative leaders called deputies are selected, using the

SWR algorithm, for the particles velocity calculation. The

proposed algorithm was compared to seven state-of-the-art

metaheuristics, namely, NSGA-II, SPEA2, GDE3, SMPSO,

AbYSS, MOCell and MOEA/D using the ZDT and DTLZ bi-

objective family problems. The convergence speed of these

algorithms was compared by counting the number of function

calls required to find an accurate approximate of the Pareto

front (HV≥98%) with a maximum of 10
6

function calls

allowed.

Figure 5: Boxplots for DTLZ Problems

The proposed LSMPSO algorithm was overall the fastest

algorithm to find an accurate approximate of the Pareto front

for 10 of 12 problems. In addition to its high convergence

speed, LSMPSO achieved a hit rate of 100% for all the studied

problems.

REFERENCES

1. Kennedy J., and Eberhart R.C. Particle Swarm Optimization. In:

Proceedings of the 1995 IEEE International Conference on Neural Networks,
Piscataway, New Jersey, pp. 1942–1948, 1995.

2. Nebro A., Durillo J., García-Nieto J., Coello C. C., Luna F., Alba E.

SMPSO: a new PSO-based metaheuristic for multi-objective optimization.
Proceedings of the IEEE Symposium Series on Computational Intelligence,

Nashville, TN, U.S.A., pp. 66–73, 2009.

3. Reyes Sierra M., and Coello Coello C. A. Improving PSO-Based Multi-
objective Optimization Using Crowding, Mutation and Dominance. In

Evolutionary Multi-Criterion Optimization (EMO 2005), LNCS 3410,

Guanajuato, Mexico, pp 505-519, 2005.

914

4. Durillo J.J., Nebro A.J., Luna F., Coello Coello C.A., and Alba E.

Convergence Speed in Multi-Objective Metaheuristics: Efficiency Criteria
and Empirical Study. International Journal for Numerical Methods in

Engineering, Vol. 83, No. 3, 2010.

5. Zitzler E., Deb K., Thieler L. Comparison of multiobjective evolutionary
algorithms: Empirical results. IEEE Trans. on Evol. Computation, Vol. 8, pp.

173-195, 2000.

6. Deb K., Thiele L., Laumanns M., and Zitzler E. Scalable Test Problems for
Evolutionary Multiobjective Optimization. In Evolutionary Multiobjective

Optimization. Theoretical Advances and Applications, Abraham A, Jain L,

Goldberg R (eds), Springer USA, pp. 105–145, 2005.
7. L., Zitzler E. and Thiele. Multiobjective evolutionary algorithms: A

comparative case study and the strength pareto approach. IEEE Trans. Evol.

Comput., Vol. 3, No. 4, pp. 257–271, November, 1999.
8. Durillo J.J., Nebro A.J., Coello Coello C.A., Garcıa-Nieto J., Luna F., and

Alba E. A Study of Multiobjective Metaheuristics When Solving Parameter

Scalable Problems. IEEE Transactions On Evolutionary Computation, Vol.
14, No. 4, pp. 618-636, 2010.

9. Reyes-sierra M, and Coello CAC. Multi-objective particle swarm

optimizers: A survey of the state-of-the-art. International Journal of
Computational Intelligence Research, Vol. 2, No. 3, pp. 287-308, 2006.

10. Hernández-Domínguez JS, Pulido GT, Coello CAC. A Multi-objective

Particle Swarm Optimizer Enhanced with a Differential Evolution Scheme.
Artificial Evolution, pp. 169-180, 2011.

11. Xu H. Wang Y, Xu X. Dominating Global Best Selection for Multi-

objective Particle Swarm Optimization. Proceedings of the 2nd International
Conference on Computer Science and Electronics Engineering (ICCSEE

2013), pp. 1503-1505, 2012.
12. Castro Junior OR, de Britto AB., Pozo A. A Comparison of methods for

leader selection in many-objective problems. IEEE Congress on Evolutionary

Computation, Brisbane, Australia, pp. 1-8, 2012.
13. Deb K., Pratap A., Agarwal S., and Meyarivan T. A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation, Vol. 6, No. 2, pp. 182–197, 2002.
14. Durillo J.J., Nebro A.J., and Alba E. The jMetal Framework for Multi-

Objective Optimization: Design and Architecture. IEEE-CEC 2010, pp. 4138-

4325, July, 2010.
15. Deb K., Pratap A., Agarwal S., and Meyarivan T. A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation, 6(2), pp. 182–197, 2002.
16. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength

Pareto Evolutionary Algorithm. EUROGEN 2001, Vol. 3242, No. 103, pp.

95–100, 2002.
17. Nebro A, Durillo J, García-Nieto J, Coello CC, Luna F, Alba E. SMPSO:

a new PSO-based metaheuristic for multi-objective optimization. Proceedings

of the IEEE Symposium Series on Computational Intelligence, Nashville, TN,
U.S.A., 2009; 66–73.

18. Kukkonen S., Lampinen J. GDE3: the third evolution step of generalized

differential evolution. IEEE Congress on Evolutionary Computation
(CEC’2005), Edinbourgh, U.K., pp. 443–450, 2005.

19. Lampinen J. DE's selection rule for multiobjective optimization. Technical

report, Lappeenranta University of Technology, Department of Information
Technology, 2001.

20. Nebro A. J., , Durillo J. J., Luna F., Dorronsoro B., and Alba E. A cellular

genetic algorithm for multiobjective optimization. In Nature Inspired
Cooperative Strategies for Optimization (NICSO 2006), Grenada, Spain, pp.

25–36, 2006.

21. Nebro A. J., Luna F., Alba E., Dorronsoro B., Durillo J. J., and Beham A.
AbYSS: Adapting scatter search to multiobjective optimization. IEEE

Transactions on Evolutionary Computation, Vol. 12, No. 4, pp. 439-457,

2008.
22. Zhang Q. and Li H. MOEA/D: A Multiobjective Evolutionary Algorithm

Based on Decomposition IEEE Transactions on Evolutionary Computation,

Vol. 11, No. 6, 2007.
23. J, Sheskin D. Handbook of Parametric and Nonparametric Statistical

Procedures. 4th ed. New York: Chapman & Hall/CRC Press, 2007.

24. Tukey J.W. Exploratory Data Analysis. Addison-Wesley, 1977.

915

