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urrent metamodel-based design optimization methods rarely
eal with problems of not only expensive objective functions but
lso expensive constraints. In this work, we propose a novel
etamodel-based optimization method, which aims directly at re-
ucing the number of evaluations for both objective function and
onstraints. The proposed method builds on existing mode pursu-
ng sampling method and incorporates two intriguing strategies:
1) generating more sample points in the neighborhood of the
romising regions, and (2) biasing the generation of sample
oints toward feasible regions determined by the constraints. The
ormer is attained by a discriminative sampling strategy, which
ystematically generates more sample points in the neighborhood
f the promising regions while statistically covering the entire
pace, and the latter is fulfilled by utilizing the information adap-
ively obtained about the constraints. As verified through a num-
er of test benchmarks and design problems, the above two
oupled strategies result in significantly low number of objective
unction evaluations and constraint checks and demonstrate supe-
ior performance compared with similar methods in the literature.
o the best of our knowledge, this is the first metamodel-based
lobal optimization method, which directly aims at reducing the
umber of evaluations for both objective function and constraints.
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1 Introduction
Due to the wide use of computation intensive tools in engineer-

ing design, metamodeling has become a popular approach in re-
cent years �1,2�. Most researchers use metamodels as a surrogate
during the expensive optimizations, directly or adaptively, for the
reduction of computational costs. In these studies, the objective
function of an optimization problem is assumed to be expensive.
The constraints, either box or more complicated linear or nonlin-
ear constraints, are usually assumed to be cheap �Refs. �3,4�, to
name a few�.

In the field of metamodeling-based design optimization, there is
little work on expensive constraints. Sasena et al. �5� studied con-
straint handling in the context of their efficient global optimiza-
tion �EGO� algorithm. The authors compared the penalty method
and the one that multiplies the expected improvement �of the ob-
jective� by the probability of the point being feasible. It was found
that these two methods have distinct merits, depending on how
strictly the constraints need to be satisfied. They tried to avoid
sampling in infeasible areas, which indirectly reduces the compu-
tational costs for constraints. Yannou et al. �6,7� and Moghaddam
et al. �8� used constraint programming with the assistance of
metamodeling to reduce the search space. In these works, con-
straints are either expensive or inexpensive; the goal is to bring
the optimization into a confined smaller space. Constraint pro-
gramming, though promising, needs careful tuning and brings ex-
tra difficulties to the designer �9�. In general, the lack of study on
expensive constraints is perhaps due to the following reasons.
First, it is found that if the constraints are also approximated by
surrogates, the obtained constrained optimum, which often rests
on the boundary of the feasible space, may be quite far from the
actual optimum because of the approximation errors in both the
objective function and the constraints �10�. While there are still
challenges to build an accurate surrogate for the objective, the
constraints are then assumed inexpensive for convenience as well
as for a better focus. Second, most of the time, researchers over-
looked the challenge of expensive constraints, as we did before.

In general, for constrained optimization, there are some classic
methods such as Lagrange multipliers, quadratic programming,
steepest descent method, and penalty methods �11�. When both
objective function and constraints are black-box, many of these
methods are not applicable. Coello �12� gave a comprehensive
review of constraint handling techniques in evolutionary compu-
tation in which the functions are also black-box. Besides, many
algorithm-specific methods such as various chromosome represen-
tations and operators, the penalty methods are of special interests.
In Ref. �12�, the author reviewed six types of penalty methods,
i.e., static penalty, dynamic penalty, annealing penalty, adaptive
penalty, co-evolutionary penalty, and death penalty. A recent book
�13� was also devoted to constraint handling for evolutionary op-
timization.

The present work was motivated from the application of the
mode pursing sampling �MPS� method, a global optimization
method originally developed in Ref. �14� for continuous variable
optimization problems, which later on was extended to solve
mixed-type variable problems �15�. Through testing its perfor-
mance �16�, it is found that MPS took an excessive amount of
processing time for constraint handling, even for inexpensive con-
straints. This, in fact, brings down its performance for relatively
high dimensional black-box problems �n�10; n is the number of
design variables�. Later on, the MPS method was applied for
crashworthiness optimization where constraints were expensive;
and the need for a technique to handle expensive constraint arose.
This work thus aims at developing a constraint handling approach
for optimization problems, involving both expensive objective
function and constraints. As discussed before, using surrogates for
both types of functions in optimization could yield erroneous re-
sults due to the metamodeling errors. New techniques are there-

fore needed. This work is based on the framework of the MPS
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ethod, which does not rely on accurate metamodels but rather on
he use of metamodels as a sampling guide. The preliminary re-
ults obtained using our proposed approach has been presented in
ef. �17�.
In Sec. 2, MPS will be briefly reviewed and its constraint han-

ling strategy is explained. The proposed approach will be de-
cribed in Sec. 3. Experimental verifications and comparison
nalysis will be presented in Sec. 4, and finally, the work will be
oncluded in Sec. 5.

Mode Pursuing Sampling Method: Review and Is-
ues

The mode pursuing sampling method �14� integrates the tech-
ique of metamodeling and a novel discriminative sampling
ethod proposed in Ref. �18� in an iterative scheme for global

ptimization of problems with black-box functions. It generates
ore sample points �candidate solutions� in the neighborhood of

he function mode and fewer in other areas as guided by a special
ampling guidance function. Moreover, by continuous sampling in
he global search space, it avoids trapping in local minima.

lgorithm 1: MPS
input: f�x� black-box function;G f = �gk�x��0 �k

1, . . . ,K� set of constraints; D f �Rn problem domain
output: xmin global minimum of f�x�, or NULL in case

f failure
begin

X← SampleWithConstraints �m�;
V← Evaluate �X , f�;
iter=1;
while iter � MAX_ITERATION do

f̂← LinearSpline �X ,V�;
h←c0− f̂
XN← SampleWithConstraints �N�;
VN← Evaluate �XN ,h�;

0 xmod← Mode �XN ,VN�;
1 Xm← SampleTowardMode �m ,XN ,VN�;
2 Vm← Evaluate �Xm , f�;
3 X←X�Xm;
4 V←V�Vm;
5 q← �n+1��n+2� /2+1;
6 �Xq ,Vq�← NeighborSamples �q ,xmod,X ,V�;
7 if QuadraticRegression �Xq ,Vq� is accurate then
8 �xmin,vmin�← DoLocalOptimization, �f ,xmod�;
9 if xmin � HyperCube �Xq� then
0 Return xmin
1 end
2 end
3 X←X�xmin;
4 V←V�vmin;
5 iter=iter+1;
6 end
7 Return NULL
8 end

The MPS method for minimizing a black-box function f :Rn

R is given as a pseudocode in Algorithm 1. It takes the set of
onstraints G f = �gk�x��0 �k=1, . . . ,K� and the problem domain

f �Rn as inputs and returns the global minimum of f�x� as out-
ut in case of success. The algorithm can be summarized in four
teps as follows:

Step 1. �Initial sampling, lines 2 and 3�: A set of m sample
points X= �xi�D f �gk�xi��0,k=1, . . . ,K ; i=1, . . . ,m� is gener-
ated randomly at line 2 using function SampleWithConstraints
�� in the feasible region of the problem domain Df �Rn where

m is an arbitrary integer that usually increases as the dimension
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of the problem domain n increases. These m points are called
expensive points since their function values are evaluated by the
black-box function f�x� at line 3.
Step 2. �Function approximation, lines 6–9�: A piecewise-linear

spline f̂�x�=�i=1
m �i	x−xi	 is then fitted �line 6� to the set of

expensive points X as a metamodel of the actual black-box

function such that f̂�xi�= f�xi� for i=1, . . . ,m, with constant �i.

Then a sampling guidance function h�x�=c0− f̂�x� is defined

�line 7� where c0 is a constant such that c0�max� f̂�x��. The
guidance function can be viewed as a probability density func-
tion �up to a normalizing constant� whose modes are located at
those xi’s where the function values are the lowest among
f�xi�’s. N �usually large� number of valid sample points are then
randomly generated within the feasible region of the problem
domain, again by calling function SampleWithConstraints �� at
line 8. These points are called cheap points since their function
values are evaluated by the linear guidance function h�x�, not
the objective function, hence, their function values will be re-
ferred as approximation values.2

Step 3. �Mode pursuing sampling, lines 10–12�: A discrimina-
tive sampling technique �see �18�� is then employed �function
SampleTowardMode �� at line 11� to draw another set of m
sample points from the set of the cheap points obtained in step
2 according to h�x� �please see �14� for implementation details�.
By construction, these sample points have the tendency to con-
centrate about the maximum �or mode� of h�x�, which corre-

sponds to the minimum of f̂�x�.
Step 4. �Quadratic regression and local optimization, lines 15–
22�: The fourth step involves a quadratic regression in a subarea

around the current minimum of f̂�x� �or mode of h�x�� accord-
ing to the discriminative sampling in step 3. If the approxima-
tion in the subarea is sufficiently accurate, local optimization is
performed in this subarea to obtain the minimum xmin. The xmin
is returned as the global minimum of f�x� if it is located inside
the identified subarea around the mode of h�x�. Otherwise, it is
added to the set of expensive points and the algorithm restarts
from step 2.

In short, the MPS is an algorithm, which uses discriminative
sampling as its engine and has an intelligent mechanism to use the
information from past iterations to lead the search toward the
global optimal. At each iteration of the MPS, two types of ap-
proximations are used: �1� approximation of the entire function by
fitting the metamodel �given as a linear spline� to all expensive
points �line 6� and �2� quadratic regression around the attractive
subregions �line 17�. The first approximation uses a piecewise-
linear spline as the metamodel because of its simplicity. One
should note that the accuracy of the metamodel is not very critical
here compared to the cases where metamodels are used as surro-
gates since it is only used to guide the search toward the function
mode. Nonetheless, the MPS method does not dictate the exclu-
sive use of the linear functions, and other types of metamodels can
be applied in lieu of the linear model. The accuracy of the qua-
dratic regression �second approximation� around the attractive ar-
eas is increased at each iteration due to the discriminative sam-
pling, which generates more and more sample points around
attractive regions.

2.1 Limitations of MPS for Constrained Optimization
Problems. Several simulations and design examples have shown
the effectiveness, robustness, and applicability of the MPS method

2Throughout this paper, cheap samples refer to those points evaluated by a spline
approximation of the objective function, while expensive samples denote the points
evaluated by the objective/constraint function itself, which is usually more time

consuming.
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n both continuous �14� and discontinuous �15� optimization.
ome of the limitations of the MPS method were discussed in Ref.
14� and a study was conducted in Ref. �16� comparing the per-
ormance of the MPS with other global optimization methods
uch as the genetic algorithms in solving global optimization of
oth expensive and inexpensive objective functions.

Similar to many algorithms in this field, one of the main issues,
hich unfortunately has been overlooked is the performance of

he MPS method in the presence of expensive constraints. In the
xamples provided in the early works mentioned above, the cost
f checking constraints when generating random sample points
specifically in function SampleWithConstraints �� called at line 8
f Algorithm 1� is not considered in the total cost of the optimi-
ation. Due to the large number of constraint checks that the MPS
ethod relies on, this cost could be a determinant factor for con-

trained optimization problems especially when the design prob-
em consists of expensive constraints. This can be explained by
aking a closer look at the strategy that MPS algorithm utilizes to
enerate sample points, particularly in function SampleWithCon-
traints �� where a large number of cheap random points need to
e generated within the feasible region of the problem domain. To
nsure that each sample point falls into the feasible region of the
roblem domain, it is checked against the set of all the constraints.
f the sample point satisfies all the constraints, then it is added to
he set of valid samples. Otherwise, it is discarded and a new
ample is randomly generated and checked for the constraints.
he generation of random samples continues based on the above
cheme until the required numbers of valid sample points are
btained.

Apparently, in constrained optimization problems, the above
trategy might result in a large number of constraint checks con-
idering the relative size of the forbidden and feasible regions.

oreover, in the above strategy, the invalid samples are discarded
nd the information obtained through the constraint check is not
sed in the overall MPS optimization algorithm.

To overcome the above shortcomings of the MPS technique, we
resent a novel sampling technique, which systematically biases
he generation of sample points toward feasible regions of the
roblem domain using the information that is incrementally ob-
ained about the constraints, hence, the name constraint-
mportance mode pursuing sampling �CiMPS�. The proposed Ci-

PS strategy is explained in more details in the next section.

Constraint-Importance Mode Pursuing Sampling
CiMPS)

The crux of our proposed CiMPS sampling method is to utilize
he information obtained about the constraints to bias the genera-
ion of samples toward feasible region of the problem domain,
ence, resulting in a more efficient sampling of the space and
ubstantially less number of constraint checks compared to the

PS method proposed in Ref. �14�. It is worthwhile to mention
hat the CiMPS technique still benefits from the advantages of
riginal MPS technique by biasing the samples toward the mode
f the objective function and, hence, the number of objective
unction evaluation is kept relatively low due to fast convergence
f the optimization process toward the mode of the function.
hus, in summary, the CiMPS method provides efficient sampling
f the problem domain by accounting for the information incre-
entally obtained on both the objective function and constraints.
his strategy is shown to result in a substantially low number of
oth function evaluations and constraint checks as we explain

ext.

ournal of Mechanical Design
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Algorithm 2: CiMPS
input: f�x� black-box function; G f = �gk�x��0 �k

=1, . . . ,K� set of constraints; D f �Rn problem domain
output: xmin global minimum of f�x�, or NULL in case

of failure
1 begin
2 X← SampleWithConstraints �m�;
3 V← Evaluate �X , f�;
4 iter=1;
5 while iter � MAX_ITERATION do

6 f̂← LinearSpline �X ,V�;
7 h←c0− f̂
8 XN← Sample �N�;
9 VN← Evaluate �XN ,h�;
10 xmod← Mode �XN ,VN�;
11 Xm← SampleTowardMode �m ,XN ,VN�;
12 vpenalty← Max �V�;
13 Vm← EvaluateWithConstraints �Xm ,vpenalty�;
14 X←X�Xm;
15 V←V�Vm;
16 q← �n+1��n+2� /2+1;
17 �Xq ,Vq�← NeighborSamples �q ,xmod,X ,V�;
18 if QuadraticRegression �Xq ,Vq� is accurate then
19 �xmin,vmin�← DoLocalOptimization �f ,xmod�;
20 if xmin� HyperCube �Xq� then
21 Return xmin
22 end
23 end
24 X←X�xmin;
25 V←V�vmin;
26 iter=iter+1;
27 end
28 Return NULL
29 end

The CiMPS algorithm �see Algorithm 2� generally follows the
four steps similar to the MPS algorithm explained in Sec. 2. To
bias the sample points toward the mode of the objective function,
the sampling technique proposed in Ref. �18� is employed as the
core of the discriminative sampling in CiMPS method �via func-
tion SampleTowardMode �� at line 11� where a set of m sample
points is systematically selected from a large number of cheap
points biased toward the function mode according to their guid-
ance function values.

3.1 Relaxing Constraint Checks. As we mentioned earlier in
Sec. 2, in the MPS method a large number of feasible cheap
sample points are generated at line 2 by calling function Sample-
WithConstraints �� in which each sample point is checked against
all the constraints and in case of no constraint violation, it is
added to the set of cheap sample points. In the CiMPS algorithm,
this condition is relaxed at line 8 by calling function Sample �� in
which the cheap sample points are generated randomly within the
problem domain without being checked against the constraints.
Hence, some of the samples might fall into forbidden regions
defined by the constraints. Please note that the objective function
may be undefined in these regions; however, the cheap sample
points are supposed to be evaluated by the guidance function h�x�
�line 9, Algorithm 2�, which is defined everywhere in the problem
domain even in the forbidden regions. Nonetheless, the function
values obtained for these infeasible samples may not properly
represent the underlying objective function. If they are not treated
appropriately they would result in improper sampling of the for-
bidden regions and eventually yields an invalid global minimum.
As we see in the next section, in our proposed sampling tech-
nique, the information obtained through these invalid samples are
utilized to bias the sampling away from the constraints and toward
the feasible regions of the problem domain.

The set of cheap sample points generated as explained above is
then sampled by function SampleTowardMode �� at line 11 using

the sampling technique in Ref. �18� to obtain a set of m expensive
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ample points, which are biased toward the mode of the guidance
unction. This step follows the implementation of the MPS tech-
ique proposed in Ref. �14�.

3.2 Constraint-Importance Sampling. The expensive
ample points obtained using function SampleTowardMode �� are
sed next to perform a quadratic regression �line 18, algorithm 2�
round the function mode, and later are added to the set of expen-
ive sample points �lines 24 and 25� for further improvement of
he spline approximation of the black-box function at line 6.
herefore, to provide more accurate approximations, these
amples should be evaluated by the objective function to obtain
heir exact function values. However, as mentioned above, some
f these samples might fall into forbidden regions where the ob-
ective function may be undefined.

lgorithm 3: EvaluateWithConstraints �X ,vpenalty�
input: X, set of sample points to be evaluated; vpenalty,

he penalty value of infeasible samples;
output: V, value functions of points in X, i.e. V= �v �v

f�x� , ∀x�X�
begin

V= ��;
foreach x in the set X do

if x satisfies all constraints then v← f�x�;
else

if variable penalty is selected then v←vpenalty;
else v← USER_DEFINED_PENALTY;

end
V←V� �v�;

0 end
1 Return V;
2 end

Therefore, these sample points are especially treated at line 13
y calling function EvaluateWithConstraints �� in which each
ample is first checked against all the constraints �see Algorithm
�. If a sample point satisfies all constraints, then its actual func-
ion value is evaluated by the objective function. Otherwise, an
ppropriate penalty value is assigned as its function value �lines
–7, Algorithm 3�, without calling the expensive objective func-

ion. Two schemes are proposed for selecting the penalty assigned
o invalid sample points: static or dynamic penalty, which are
escribed in Secs. 3.2.1 and 3.2.2.

3.2.1 Static Penalty Scheme. If the user has some information
egarding the maximum value �for a minimization problem� that
he objective function can achieve over the problem domain, then
value equal to or greater than the maximum can be selected as a

fixed� user defined penalty and is returned as the function value
f infeasible samples �line 7, Algorithm 3�. This information can
e obtained by the user at the beginning by examining the objec-
ive function.

3.2.2 Dynamic Penalty Scheme. The second scheme modifies
he penalty value as follows. At each iteration, the penalty value
ould be set equal to or greater than the maximum function value

for a minimization problem� of the valid samples, which have
een already identified up to the current iteration �line 12, Algo-
ithm 2�. This value vpenalty is passed to the function Evaluate-

ithConstraints, where it is returned as the function value of in-
easible samples �line 6, Algorithm 3�. This approach is more
ractical and less demanding since usually global information
bout the black-box function is not available beforehand and the
xed penalty scheme may not be applicable.
Interestingly, assigning an appropriate penalty obtained using

ither of above two schemes imposes a high function value to the

pproximated objective function f̂�x� in forbidden regions repre-
ented by infeasible samples. This, in turn, results in low values
or the guidance function h�x� in forbidden region. Hence, the

eneration of sample points in function SampleTowardMode ��

14505-4 / Vol. 133, JANUARY 2011
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will be biased away from the forbidden regions because, accord-
ing to the sampling technique in Ref. �18�, function SampleTo-
wardMode generates more sample points in the neighborhood of
the function mode �regions with better fitness values� and gener-
ates less sample points in areas with worse fitness.

4 Performance Evaluations and Comparisons
Intensive experiments and performance comparisons have been

performed to evaluate the performance of the proposed CiMPS
method on constrained benchmark and design problems. The re-
sults are presented in Secs. 4.1 and 4.2. Please note that in all of
the following experiments, the termination criterion for the Ci-
MPS method �and similarly for the MPS technique� is determined
by checking if the current local minimum falls in the hypercube
defined by the neighbor samples around the current mode of the
set of sample points �lines 17–23, Algorithm 2�.

4.1 Constrained Benchmark Problems and Results. The
performance of the CiMPS method has been compared with the
original MPS method on seven well-known constrained optimiza-
tion problems selected from a suite of test benchmarks compiled
in Ref. �19�. The specifications of these problems �and their origi-
nal references� along with our results have been summarized in
Table 1.

For each of these problems, 30 runs have been carried out using
both the MPS and CiMPS methods and their performances are
compared based on two cost indicators: �1� number of objective
function evaluations �nfe� and �2� number of constraint checks
�ncc�. Both CiMPS and MPS methods applied to each problem
share the same run settings as given in Table 1. For a detailed
explanation of these settings and their effects, one can refer to
Ref. �14�.

The simulation results obtained using the MPS and CiMPS
methods for above problems are summarized in Table 1. As
shown, for all test examples, the number of constraint checks
�ncc� by the CiMPS method is significantly lower compared with
the corresponding number of constraint checks by the MPS
method. Moreover, for all benchmarks, the CiMPS performs bet-
ter in terms of number of function evaluations �nfe� as well. This
is because that the optimization process is directed away from
infeasible regions and converges earlier than the MPS.

It is also noteworthy that the optimization of problems with
equality constraints �e.g., g03, g05, g11, and g13 in Ref. �19�� is a
quite challenging and time consuming task for sampling-based
optimization techniques including MPS and its extended version
CiMPS. This is due to the fact that the probability of generating
feasible random samples which guarantee the equality of con-
straints is quite low. Hence, for such problems sampling-based
techniques fail to generate the required number of feasible
samples in a timely manner. These techniques also yield a large
number of infeasible samples for problems with tightly con-
strained domains whose optimum solutions are located in narrow
feasible regions. This can be observed from the results obtained
for the problems g06, g07, g09, and g10 �see Table 1� for which a
relatively large number of constraint checks has been performed
to obtain the required number of feasible samples.

4.2 Constrained Design Problems. Two well-known engi-
neering design problems are used to evaluate the performance of
the proposed method: �1� minimization of weight of the spring
and �2� pressure vessel design. Both are constrained optimization
problems consisting of several expensive constraints. Each prob-
lem is described with its corresponding constraints, bounds, and
objective function in Secs. 4.2.1 and 4.2.2.

4.2.1 Minimization of Weight of the Spring. This problem has
been used as a test benchmark in literature, e.g., Refs. �11,24–26�.
In its standard form �11�, it consists of designing a tension/

compression spring �see Fig. 1� to carry a given axial load.
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The objective is to minimize the weight of the spring fWS as

fWS�x1,x2,x3� = �x3 + 2�x2x1
2 �1�

here x1=d is the wire diameter �inch�, x2=D is the mean coil
iameter �inch�, and x3=N is the number of active coils, subject to
he following four constraints:

g1�x� = 1.0 −
x2

3x3

71875x1
4 � 0

g2�x� =
x2�4x2 − x1�

12566x1
3�x2 − x1�

+
2.46

12566x1
2 − 1.0 � 0

g3�x� = 1.0 −
140.54x1

x2
2x3

� 0

able 1 Simulation results obtained for the test benchmarks us
er problem…; problem specifications: n is the number of variab
umber of cheap points generated at each iteration, l is the num
umber of expensive sample points generated at each iteration
umber of constraint checks

f�x� n K Known optimum N m l Method

01 �20� 13 9 �15 50 10 5 MPS
CiMPS

04 �21� 5 6 �30665.539 50 10 5 MPS �
CiMPS �

06 �20� 2 2 �6961.81388 50 10 5 MPS
CiMPS

07 �22� 10 8 24.30621 50 10 5 MPS
CiMPS

08 �23� 2 2 0.095825 100 10 10 MPS
CiMPS

09 �22� 7 4 680.630057 100 10 10 MPS
CiMPS

10 �22� 8 6 7049.3307 50 5 10 MPS
CiMPS

D

d

LoadLoad

Fig. 1 A tension/compression coil spring

Table 2 Best solution obtained for the minim
CiMPS method compared with the best soluti

Design CiMPS �this work� MPS �14� C

x1 0.05156 0.05154 0
x2 0.35363 0.35322 0
x3 11.47221 11.49692 9
fWS�x� 0.012665 0.012664 0
nfe 21 33
ncc 1911 20,994
ournal of Mechanical Design
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g4�x� =
x2 + x1

1.5
− 1.0 � 0 �2�

and 0.05�x1�0.20, 0.25�x2�1.30, and 2�x3�15.
Table 2 summarizes and compares the results obtained by ap-

plying both the MPS and CiMPS methods �30 runs for each algo-
rithm�. The number of cheap points generated at each iteration is
N=100 and the number of contours used is five for all runs. As it
can be seen, the CiMPS method results in significantly lower
number of constraint checks �ncc� and also less number of func-
tion evaluations �nfe�.

This problem has been solved by a number of researchers: by
Arora �11� using a numerical technique called constraint correc-
tion at constant cost �CCC�, by Coello and Mezura-Montes �26�
using a Genetic Algorithm �GA�-based approach, by Mahdavi et
al. �25� using an improved variation of harmony search �IHS�
algorithm �27�, and by Belegundu and Arora �24� using eight nu-
merical techniques with the best solution obtained using M-4
method, which is a variation of a Lagrange multipliers code based
on Powell’s algorithm �28�. The above solutions are compared
with the best solution found using our proposed CiMPS technique
and the original MPS method in Table 2. As it can be seen, the
solution obtained using our proposed CiMPS method �and the
MPS� is better than the ones obtained by other techniques. More-

both the MPS and CiMPS methods „30 runs for each algorithm
and K is the number of constrains; run settings †14‡: N is the

r of contours by which the cheap points are grouped, and m is
sults: nfe is the number of function evaluations and ncc is the

Optimum found nfe ncc

Best Mean Mean Median Mean Median

14.209 �13.780 219 218 26,712 25,891
14.587 �14.212 203 202 17,181 16,919

65.539 �30665.539 75 74 635 617
65.539 �30665.539 60 59 266 266

61.81388 �6961.81388 30 29 405,740 386,985
61.81388 �6961.81388 15 14 29,706 29,661

24.30621 24.30621 136 130 187,217 172,872
24.30621 24.30621 126 126 107,135 106,535

0.095825 0.095825 115 107 41,630 27,216
0.095825 0.095825 103 103 11,811 11,485

80.630057 680.630057 142 133 82,695 67,616
80.630057 680.630057 113 110 18,803 18,794

49.2480 7049.2480 72 72 592,518 584,525
49.2480 7049.2480 56 56 194,860 202,131

ion of weight of the spring problem using the
reported by other works „N/A: not available…

ethod

�11� GA-based �26� M-4 �24� IHS �25�

3396 0.051989 0.0500 0.05115438
9180 0.363965 0.3176 0.34987116
5400 10.890522 14.027 12.0764321
2730 0.012681 0.01272 0.0126706
8 80,000 1605 30,000
/A N/A N/A N/A
ing
les
be

; re

�
�

306
306

�69
�69

6
6
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izat
ons
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ver, other than the CCC technique presented in Ref. �11�, the
iMPS maintains a superior performance in terms of number of

unction evaluations �nfe� compared with others. The CCC tech-
ique utilizes the gradient information of the objective function,
hich increases the convergence rate of the optimization process

nd, hence results in lower number of function evaluations. Un-
ortunately, other than in the MPS technique, the number of con-
traint checks has been neglected �or is not reported� in the above
revious works and we are not able to provide a performance
omparison based on that criterion. The cost of constraint check-
ng has been paid almost no attention in optimization literature. To
he best of our knowledge the proposed CiMPS approach is the
rst metamodel-based technique, which directly aims at reducing

he number of constraint checks when it comes to optimization of
roblems with expensive black-box constraints.

4.2.2 Pressure Vessel Design. The second problem is to mini-
ize the total cost, including the cost of material, forming and
elding of a cylindrical vessel, which is capped at both ends by
emispherical heads as shown in Fig. 2. The total cost fPV�x� is
iven as

fPV�x� = 0.6224x1x3x4 + 1.7781x2x3
2 + 3.1661x1

2x4 + 19.84x1
2x3

�3�

here x1=Ts is the thickness of the shell, x2=Th is the thickness
f the head, x3=R is the inner radius, and x4=L is the length of the
ylindrical section, subject to the following six constraints:

g1�x� = − x1 + 0.0193x3 � 0

g2�x� = − x2 + 0.00954x3 � 0

g3�x� = − �x3
2x4 − 4

3�x3
3 + 1,296,000 � 0

g4�x� = x4 − 240 � 0

g5�x� = 1.1 − x1 � 0

g6�x� = 0.6 − x2 � 0 �4�

ith the bounds 1.0�x1�1.375, 0.625�x2�1.0, 25�x3�150,
nd 25�x4�240.

Th

R

Ts

R

L

Fig. 2 A pressure vessel

Table 3 Best solution obtained for the pre
method compared with the best solutions rep

Design CiMPS �this work� MPS �14� G

x1 1.10000 1.10000
x2 0.625 0.625
x3 56.99482 56.99482
x4 51.00125 51.00125
fPV�x� 7163.739 7163.739
nfe 37 62
ncc 335 4565
14505-6 / Vol. 133, JANUARY 2011
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Table 3 summarizes and compares the results obtained by ap-
plying both the MPS and CiMPS methods �30 runs for each algo-
rithm�. The number of cheap points generated at each iteration is
N=200 and the number of contours used is 20 for all runs. As it is
seen, the CiMPS method results in significantly lower number of
constraint checks �ncc� and also less number of function evalua-
tions �nfe�.

This problem has been solved by Ref. �29� using a GA-based
approach, by �30� using harmony search �HS� algorithm �27�, by
�25� using an improved harmony search �IHS� algorithm, and by
�31� using branch and bound �BB� method. The best solutions
obtained using the above techniques are compared with the best
solutions found using our proposed CiMPS technique and the
original MPS method in Table 3. As it can be seen, the solution
obtained using our proposed CiMPS method �and MPS� is better
than the ones obtained by other techniques. Unfortunately, none of
the referred works have reported on the number of function evalu-
ations, constraint checks, or iterations. These works are mostly
focused on finding the best solutions and as our results show for
this problem, both MPS and CiMPS techniques have yielded bet-
ter solutions than the other mentioned techniques.

5 Conclusion Remarks
When we deal with expensive optimization problems, our focus

of attention is mostly on objective function�s�, and we assume that
the constraints are inexpensive. That is why in the majority of
literature on computer experiments, just the average number of
function evolutions are measured and compared and the number
of constraint evaluations is simply ignored. In real-world applica-
tions, unlike benchmark functions, expensive mixed equality and
inequality constraints are commonly met. In this work, a new
method called CiMPS is developed for optimization problems in-
volving both expensive objective function and constraints. This
method inherits characteristics of MPS and furthermore enhances
MPS by steering the sampling away from infeasible regions, sav-
ing the number of evaluations for both constraints and the objec-
tive.

The performance of the CiMPS method was experimentally
verified through two test suites, namely, seven constrained bench-
mark problems and two real design problems. The CiMPS and its
parent algorithm �MPS� was compared on both test suites, also
both competed with four other well-known optimization methods
on design problems. The reported results clearly confirmed that
the CiMPS outperforms the MPS. The CiMPS also yields better
optimum for the two design problems with close to the least num-
ber of function evaluations compared with four well-established
algorithms. It thus opens a promising direction to tackle with ex-
pensive constrained optimization problems.

Developing a mixed-variable version of CiMPS and enhancing
it for large-scale problems are our directions for future work.

re vessel design problem using the CiMPS
ed by other works „N/A: not available…

Method

based �29� HS �30� IHS �25� BB �31�

1.125 1.125 1.125 1.125
0.625 0.625 0.625 0.625
8.1978 58.2789 58.29015 48.97
4.2930 43.7549 43.69268 106.72
07.494 7198.433 7197.730 7980.894
N/A N/A N/A N/A
N/A N/A N/A N/A
ssu
ort

A-

5
4
72
Transactions of the ASME

5 Terms of Use: http://www.asme.org/about-asme/terms-of-use



R

J

Downloaded Fr
eferences
�1� Simpson, T., Peplinski, J., Koch, P., and Allen, J., 2001, “Metamodels for

Computer-Based Engineering Design: Survey and Recommendations,” Eng.
Comput., 17�2�, pp. 129–150.

�2� Wang, G., and Shan, S., 2007, “Review of Metamodeling Techniques in Sup-
port of Engineering Design Optimization,” ASME J. Mech. Des., 129�4�, pp.
370–380.

�3� Schonlau, M., Welch, W. J., and Jones, D. R., 1998, “Global Versus Local
Search in Constrained Optimization of Computer Models,” Lecture Notes—
Monograph Series, 34, pp. 11–25.

�4� Regis, R. G., and Shoemaker, C. A., 2005, “Constrained Global Optimization
of Expensive Black Box Functions Using Radial Basis Functions,” J. Global
Optim., 31�1�, pp. 153–171.

�5� Sasena, M. J., Papalambros, P., and Goovaerts, P., 2002, “Exploration of Meta-
modeling Sampling Criteria for Constrained Global Optimization,” Eng. Op-
timiz., 34, pp. 263–278.

�6� Yannou, B., Simpson, T. W., and Barton, R., 2005, “Towards a Conceptual
Design Explorer Using Metamodeling Approaches and Constraint Program-
ming,” ASME Paper No. DETC2003/DAC-48766.

�7� Yannou, B., Moreno, F., Thevenot, H., and Simpson, T., 2005, “Faster Gen-
eration of Feasible Design Points,” ASME Paper No. DETC2005/DAC-85449.

�8� Moghaddam, R., Wang, G., Yannou, B., and Wu, C., 2006, “Applying Con-
straint Programming for Design Space Reduction in Metamodeling Based Op-
timization,” 16th International Institution for Production Engineering Research
�CIRP� International Design Seminar, Paper No. 10081.

�9� Yannou, B., and Harmel, G., 2006, “Use of Constraint Programming for De-
sign,” Advances in Design, Springer, London, UK, pp. 145–157.

�10� Wang, G., 2003, “Adaptive Response Surface Method Using Inherited Latin
Hypercube Design Points,” ASME J. Mech. Des., 125�2�, pp. 210–220.

�11� Arora, J., 2004, Introduction to Optimum Design, Elsevier Academic, New
York.

�12� Coello, C., 2002, “Theoretical and Numerical Constraint-Handling Techniques
Used With Evolutionary Algorithms: A Survey of the State of the Art,” Com-
put. Methods Appl. Mech. Eng., 191�11–12�, pp. 1245–1287.

�13� 2009, Constraint-Handling in Evolutionary Optimization, E. Mezura-Montes,
ed., Springer, New York.

�14� Wang, L., Shan, S., and Wang, G., 2004, “Mode-Pursuing Sampling Method
for Global Optimization of Expensive Black-Box Functions,” Eng. Optimiz.,
36�4�, pp. 419–438.

�15� Sharif, B., Wang, G., and ElMekkawy, T., 2008, “Mode Pursuing Sampling

Method for Discrete Variable Optimization on Expensive Black-Box Func-

ournal of Mechanical Design

om: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 10/23/201
tions,” ASME J. Mech. Des., 130�2�, p. 021402.
�16� Duan, X., Wang, G., Kang, X., Niu, Q., Naterer, G., and Peng, Q., 2009,

“Performance Study of Mode-Pursuing Sampling Method,” Eng. Optimiz.,
41�1�, pp. 1–21.

�17� Kazemi, M., Wang, G. G., Rahnamayan, S., and Gupta, K., 2010, “Constraint
Importance Mode Pursuing Sampling for Continuous Global Optimization,”
ASME Paper No. DETC2010-28355.

�18� Fu, J., and Wang, L., 2002, “A Random-Discretization Based Monte Carlo
Sampling Method and Its Applications,” Methodol. Comput. Appl. Probab.,
4�1�, pp. 5–25.

�19� Runarsson, T. P., and Yao, X., 2000, “Stochastic Ranking for Constrained
Evolutionary Optimization,” IEEE Trans. Evol. Comput., 4�3�, pp. 284–294.

�20� Floudas, C. A., and Pardalos, P. M., 1990, A Collection of Test Problems for
Constrained Global Optimization Algorithms, Springer-Verlag, New York.

�21� Himmelblau, D. M., 1972, Applied Nonlinear Programming, McGraw-Hill,
New York.

�22� Hock, W., and Schittkowski, K., 1981, Test Examples for Nonlinear Program-
ming Codes, Springer-Verlag, Secaucus, NJ.

�23� Koziel, S., and Michalewicz, Z., 1999, “Evolutionary Algorithms, Homomor-
phous Mappings, and Constrained Parameter Optimization,” Evol. Comput.,
7�1�, pp. 19–44.

�24� Belegundu, A. D., and Arora, J. S., 1985, “A Study of Mathematical Program-
ming Methods for Structural Optimization. Part II: Numerical Results,” Int. J.
Numer. Methods Eng., 21�9�, pp. 1601–1623.

�25� Mahdavi, M., Fesanghary, M., and Damangir, E., 2007, “An Improved Har-
mony Search Algorithm for Solving Optimization Problems,” Appl. Math.
Comput., 188�2�, pp. 1567–1579.

�26� Coello, C. A. C., and Mezura-Montes, E., 2002, “Constraint-Handling in Ge-
netic Algorithms Through the Use of Dominance-Based Tournament Selec-
tion,” Adv. Eng. Inf., 16�3�, pp. 193–203.

�27� Geem, Z., Kim, J., and Loganathan, G., 2001, “A New Heuristic Optimization
Algorithm: Harmony Search,” Simulation, 76�2�, pp. 60–68.

�28� Powell, M., 1978, “Algorithms for Nonlinear Constraints That Use Lagrangian
Functions,” Math. Program., 14�1�, pp. 224–248.

�29� Wu, S., and Chow, P., 1995, “Genetic Algorithms for Nonlinear Mixed
Discrete-Integer Optimization Problems via Meta-Genetic Parameter Optimi-
zation,” Eng. Optimiz., 24�2�, pp. 137–159.

�30� Lee, K., and Geem, Z., 2005, “A New Meta-Heuristic Algorithm for Continues
Engineering Optimization: Harmony Search Theory and Practice,” Comput.
Methods Appl. Mech. Eng., 194�36–38�, pp. 3902–3933.

�31� Sandgren, E., 1990, “Nonlinear Integer and Discrete Programming in Me-

chanical Design Optimization,” ASME J. Mech. Des., 112�2�, pp. 223–229.

JANUARY 2011, Vol. 133 / 014505-7

5 Terms of Use: http://www.asme.org/about-asme/terms-of-use


