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Abstract—One of the main disadvantages of population-based
evolutionary algorithms (EAs) is their high computational cost
due to the nature of evaluation, specially when the population
size is large. The micro-algorithms employ a very small number
of individuals, which can accelerate the convergence speed of
algorithms dramatically, while it highly increases the stagnation
risk. One approach to overcome the stagnation problem can be
increasing the diversity of the population. To do so, a micro-
differential evolution with vectorized random mutation factor
(MDEVM) algorithm is proposed in this paper, which utilizes
the small size population benefit while preventing stagnation
through diversification of the population. The proposed algo-
rithm is tested on the 28 benchmark functions provided at the
IEEE congress on evolutionary computation 2013 (CEC-2013).
Simulation results on the benchmark functions demonstrate
that the proposed algorithm improves the convergence speed
of its parent algorithm.

I. INTRODUCTION

EVOLUTIONARY and swarm intelligence algorithms
work on a population set. The population set size

is one of the most important factors, which crucially af-
fects the algorithm performance [1]. Generally speaking, a
population-based algorithm with a large population size has
lower risk of premature convergence as well as stagnation.
Unfortunately, an algorithm with a large populations size
needs more function evaluations and therefore shows a lower
convergence velocity [2]. The stagnation is not the same
as premature convergence. During stagnation, the popula-
tion remains unconverged but divert and the optimization
process does not progress. A large population size offers
a more diversified pool of individuals whose recombination
offers higher likelihood to locate the global solution [2]-
[4]. Therefore, reducing the population size while raising the
diversity of the population is a key point to achieve a faster
convergence speed while maintaining a low risk of premature
convergence or stagnation.

A population-based algorithms with a small population
size is called a micro-algorithm, some times denoted by
µ-algorithm [4]. The micro-algorithms due to their low
populations size and less hardware demand than their parent
algorithms can be utilized to solve many real-time problems
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such as in wireless communication networks [3], [5], or
vehicle navigation systems [6]. Many research works have
been conducted to develop efficient micro-algorithms. One
of the earliest research works in this direction was a genetic
algorithm (GA) with five chromosomes in its population [28].
The strategy in this micro-GA approach is to copy the best
found string in the current population to the next generation’s
population. This work was tested on low-dimensional prob-
lems, which resulted in a faster convergence speed compared
to the traditional GA [29]. Particle swarm optimization (PSO)
was another algorithm tested with the micro concept [7],[30].
By using the micro-PSO algorithm, a parallel master-slave
model of cooperative micro-PSO is introduced [7], in which
the original search space is decomposed into subspaces with
smaller dimensions. Then, five individuals are considered
in each subspace to identify suboptimal partial solution
components. Its performance was assessed on a set of five
widely used test problems with significant improvements in
solution quality, compared to the original PSO algorithm
[7]. In [30] the conducted simulations are for five high-
dimensional benchmark functions. The results demonstrated
superior performance of micro-PSO versus the standard PSO.

The micro-algorithms also have been employed to solve
multi-objective optimization (MOO) problems. The improved
version of nondominated sorting genetic algorithm (NSGA-
II) with a specific population initialization strategy are em-
bedded into the standard micro-GA to solve the MOO prob-
lems [10]. In [21] a multi-objective micro genetic extreme
learning machine (G-ELM) was proposed, which provides
the appropriate number of hidden nodes in the machine for
solving the problem as well as the tuned values of weights
and biases, which minimizes the mean square error (MSE)
of results.

The differential evolution (DE) algorithm is one of the
state-of-the-art global optimization algorithms, which is pop-
ular due to its simplicity and reliability. This algorithm
works based on the scaled difference between two individuals
of a population’s set, where the scaling factor is called
the mutation factor. Due to fast implementation as well
as reliability and simplicity of the DE algorithm, it has
been employed in many science and engineering areas, such
as solving large capacitor placement problems [16] and
synthesis of spaced antenna arrays [17]. Many research works
have been conducted to enhance the DE algorithm, such as
opposition-based differential evolution (ODE) [14], enhanced
differential evolution using center-based sampling [15], and
opposition-based adaptive differential evolution [16]. Some
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approaches toward reducing computational cost of DE-based
algorithms by reducing the population size have been pro-
posed, [8]-[13]. A gradually reducing population size method
is proposed in [8]. This method is examined on 13 benchmark
functions, where the results have demonstrated a higher
robustness as well as efficiency compared to standard DE
(SDE) [8]. In another approach [9], small size cooperative
sub-populations are employed to find sub-components of the
original problem concurrently. During cooperation of sub-
populations, the sub-components are combined to construct
the complete solution of the problem. Performance evaluation
of this method has been done on high-dimensional instances
of five sample test problems with encouraging results re-
ported in [9]. As a micro-DE application, it is employed
for evolving an indirect representation of the bin packing
problem, where acceptable performance is reported in [11].
The idea of self-adaptive population size was carried out
to test absolute encoding and relative encoding methods for
DE [12]. The reported simulation results on 20 benchmark
problems denote that in terms of the average performance
and stability, the self-adaptive population size using rela-
tive encoding outperforms the absolute encoding method
and the standard DE algorithm [12]. The idea of micro-
ODE was proposed and evaluated for an image thresholding
case study [13]. Performance of the proposed method was
compared with the Kittler algorithm and the standard micro-
DE (SMDE). The micro-ODE method has outperformed
these algorithms on 16 challenging test images and has
demonstrated faster convergence speed due to embedding the
opposition-based population initialization scheme [13].

In this paper, an enhanced version of the micro-DE al-
gorithm, i.e., micro-differential evolution using vectorized
random mutation factor (MDEVM), is proposed based on
vectorization of the random mutation amplification factor in
the DE algorithm. In the proposed algorithm, in contrast
to the traditional DE algorithm where the mutation factor
(i.e. F ) is constant, the mutation factor is randomized and
vectorized. This technique increases the diversity of the
population to avoid stagnation.

In the next section, a brief review of the DE algorithm
and its micro scheme is presented. In Section III, diversity
enhancement in micro-differential evolution using vectorized
random mutation factor is reviewed in detail. The proposed
MDEVM algorithm is presented in Section IV and its per-
formance is evaluated in Section V. Finally, the paper is
concluded in Section VI.

II. DIFFERENTIAL EVOLUTION

Generally speaking, during solving a black-box problem,
an optimizer has no knowledge about the shape of the
landscape as it tries to find optimal decision variables to
minimize/maximize an objective function. The DE algorithm
is one of the state-of-the-art evolutionary algorithms, which,
similar to other algorithms in its category, starts its search
procedure with some uniform random initial vectors and tries
to improve them generation by generation toward an optimal
solution. The population P = {X1, ...,XNP } consists of NP

vectors in generation g, where Xi is a D-dimensional vector
defined as Xi = (xi,1, ..., xi,D). A simple DE algorithm
consists of the following three major operations: mutation,
crossover, and selection.

Mutation: This step selects three vectors randomly from
the population such that i1 6= i2 6= i3 6= i, where
i ∈ {1, ..., NP} and NP ≥ 4 for each vector Xi. The mutant
vector is calculated as

Vi = Xi1 + F (Xi2 − Xi3), (1)

where the factor F ∈ (0, 2] is a real constant number, which
controls the amplification of the added differential variation
of (Xi2 −Xi3). The exploration of DE increases by selecting
higher values for F .

Crossover: The crossover operation increases diversity of
the population by shuffling the mutant and parent vector as
follows:

Ui,d =

{

Vi,d, randd(0, 1) ≤ Cr or drand = d

xi,d, otherwise
, (2)

where d = 1, ..., D, Cr ∈ [0, 1] is the crossover rate
parameter, and rand(a, b) generates a random number in the
interval [a, b] with a uniform distribution. Therefore, the trial
vector Ui ∀i ∈ {1, ..., NP} can be generated:

Ui = (Ui,1, ..., Ui,D). (3)

Selection: The Ui and Xi vectors are evaluated and compared
with respect to their fitness values; the one with better fitness
is selected for the next generation.

III. PROPOSED DIVERSITY ENHANCEMENT IN
MICRO-DIFFERENTIAL EVOLUTION USING VECTORIZED

RANDOM MUTATION FACTOR

The transition from a scalar constant F to a scalar random
F to a vectorized random F in DE has an interesting inverse
in PSO. In original PSO [22], “velocities were adjusted
according to their difference, per dimension, from best lo-
cations”, and this design guideline is further solidified in
the 2007 standard for PSO which states that the attraction
vectors are multiplied by the weights ε1 and ε2 which
“are independent random numbers uniquely generated at
every update for each individual dimension d = 1 to D”
[23]. However, an interesting divergence has occurred to
create a version with scalar random weights likely starting
with “rand() and Rand() are two random functions in
the range [0,1]” in [24] which becomes, for example, “r1
and r2 are independent random numbers between 0 and
1” in [25]. As an extreme similar to scalar constant F ,
there is also “Canonical Deterministic PSO” in which the
update equation “system does not contain stochastic factors”
[26]. Conversely, since “the above dimension by dimension
method is biased”, a “geometrical” form of update weights
has also been proposed [27]. Overall, the role and effect of
update weights in both DE and PSO is an interesting area
for continued and coordinated study.

In our proposed algorithm, the population size is consid-
ered very small compared to the SDE algorithm. Reducing
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(a) Mutation vector distribution.
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Fig. 1. Mutation vector diversity for a 2-D individual.

the population size results in faster convergence but also
a higher risk of stagnation. It is possible to decrease the
stagnation risk by increasing the population diversity [2],
[29]. The mutation factor F is one of the most significant
control parameters for the DE algorithm, which can affect its
performance significantly. Therefore, proper selection of F

value is critical. In the DE algorithm, F has a constant muta-
tion factor generally set to F = 0.5 [2], [14]. This factor can
also be selected randomly from the interval [0.1, 1.5] for each
individual i in the population vector, Fi = rand(0.1, 1.5),
[29]. We call this approach the micro-differential evolution
with scalar random mutation factor (MDESM) algorithm if
the population size is very small such as NP ∈ {4, 5}. In
the SMDE algorithm, in order to increase the population
diversity, we propose the idea of utilizing a random vector
(and not scalar) F for each individual in the population.
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Fig. 2. Population diversity for different mutation factor schemes with
populations sizes NP ∈ {4, 5}.

This approach is called the MDEVM algorithm. Therefore,
the mutation factor can be defined for each individual i as
follows:

Fi = {Fi,1, ..., Fi,D}, ∀i ∈ 1, ..., NP , (4)

where Fi,1 = rand(0.1, 1.5) [29].
In Fig. 1.a, the mutation vector distribution for a 2-D indi-

vidual is presented. In the case of having a constant mutation
factor, diversity of the generated mutation vector is limited
to one static point on the direction of vector V1 (i.e. F×V1).
By considering an identical random F for all parameters of
an individual, the diversity of mutation vector is along the
line which is indicated by the vector V1 (i.e., F ×V1, F is a
uniform random scalar number). Conversely, by randomizing
F for each parameter of each individual using a random
vector F, its diversity covers the whole plane containing the
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Fig. 3. Boundary coverage calculated based on the average of distances
among population centroid and individuals for different mutation factor
schemes.

example vectors {V2, ...,V6}. In Fig. 1.b, this difference in
covering the search space is investigated by using Monte-
Carlo simulation. Since we have considered NP = 5 and
r = 3 randomly selected population vectors, in total, we have
(

NP−1
r

)

× r!×NP = 4× 6× 5 = 120 distinct possibilities
to generate mutant vectors. The simulation illustrates that
the vectorized random F supports a higher diversity than the
random scalar one (i.e. Fi), where its diversity is limited
to the points on a line. In other words, if all variables in
the individual vector i are multiplied by a random scalar
number, other points on the same direction of the line which
is indicated by vector V1 are generated. In fact, in this
scheme F is generating points on the same direction as V1. If
the relationship among the variables (variables’ interaction)
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Fig. 4. Population diversity calculated based on the average of distances
between individuals pair for different mutation factor schemes.

are linear, the mutation vector is doing fine (which is a
very exceptional case, especially during solving real-world
problems). However, when F is vectorized randomly, the
mutation vector has no restriction to explore any point on
the search space with no line restriction which was the case
for random scalar F . This discussion is valid for higher
dimensions, where the line needs to be replaced with a plane
or hyperplane.

The population diversity for all possible mutations of
individuals for NP = 4 and NP = 5 are presented in
Fig. 2.a and Fig.2.b, respectively. In order to be fair, for
two randomized F schemes (i.e., scalar and vector), the
same number of the mutant points (equal to all possible
mutations for the F=constant) have been generated. Both
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Algorithm 1 Micro-Differential Evolution with Vectorized
Mutation (MDEVM)

1: Procedure MDEVM
2: g = 0

//Initial Population Generation

3: for i = 1 → NP do
4: for d = 1 → D do
5: Xi,d = xmin

d
+ rand(0, 1)× (xmax

d
− xmin

d
)

6: end for
7: Pg

i
= Xi

8: end for
//End of Initial Population Generation

9: while (|BFV − V TR| > EV TR & NFC < NFCMax) do
10: for i = 1 → NP do

//Mutation

11: Select three random population vectors from Pg where
(i1 6= i2 6= i3 6= i)

12: for d = 1 → D do
13: F = rand(0.1, 1.5)
14: Vi,d = Xi1,d

+ F (Xi2,d
− Xi3,d

)
15: end for

//End of Mutation

//Crossover

16: for d = 1 → D do
17: if rand(0, 1) < Cr or drand = d then
18: Ui,d = Vi,d

19: else
20: Ui,d = xi,d

21: end if
22: end for

//End of Crossover

//Selection

23: if f(Ui) ≤ f(Xi) then
24: X′

i
= Ui

25: else
26: X′

i
= Xi

27: end if
//End of Selection

28: end for
29: Xi = X′

i
, ∀i ∈ {1, ..., NP}

30: g = g + 1
31: Pg = {X1, ...,XNP }
32: end while

plots demonstrate that the vectorized random mutation factor
supports higher diversity in the population than the scalar
random and constant mutation factors.

The population diversity for NP = 4 and NP = 5
are measured for varying search space dimensions as shown
in Fig. 3. The boundary coverage (BC) of populations are
measured by averaging the distances among the centroid of
population and individuals

BCD =
1

NP

NP
∑

i=1

√

(xi,1 − xc
1)

2 + ...+ (xi,D − xc
D)2, (5)

where the centroid of the population is Xc = (xc
1, ..., x

c
D),

computed as

xc
d =

1

NP

NP
∑

i=1

xi,d, ∀d ∈ {1, ..., D}. (6)

As Fig.3.a demonstrates for NP = 4, the diversity of
vectorized random mutation factor in [0.1, 1.5] is more

concentrated, with higher values for the range of dimensions
than the scalar random mutation factor in [0.1, 1.5]. By
considering NP = 5 as in Fig. 3.b, all schemes have more
robustness than in the NP = 4 case study. However, the
scalar random mutation factor scheme has lower diversity
than the vectorized random mutation factor. The constant mu-
tation factor, i.e. F = 0.5, has the least diversity among the
other schemes. The population diversity (PD) is computed
by averaging the distances between all individual pairs of
population

PDD =

NP
∑

i=1

NP
∑

j=1
i6=j

√

(xi,1 − xj,1)2 + ...+ (xi,D − xj,D)2

NP × (NP − 1)
.

(7)
This population diversity is presented in Fig. 4 for NP =
4 and NP = 5, where almost the identical behaviour as
shown in Fig. 3 is apparent. Our measurements show that
the average of diversity for scalar random F is less than the
vectorized approach across the range of dimensions.

IV. PROPOSED MICRO-DIFFERENTIAL EVOLUTION
USING VECTORIZED RANDOM MUTATION FACTOR

ALGORITHM

The pseudocode of the proposed MDEVM approach is
described in Algorithm 1. After generation of initial popula-
tion, the mutation vector is computed by using the proposed
Eq. (4). Then, the crossover and mutation procedures are
conducted similar to the DE algorithm and the next popu-
lation is generated. The termination criterion is met when
the difference between best fitness value (BFV ) and fitness
value to reach (V TR) is less than fitness error-value-to-reach
(EV TR), or the searching procedure exceeds the maximum
number of function calls NFCMax, i.e., NFC ≥ NFCMax.
As mentioned, the only difference between DE and MDEVM
is in the mutation amplification factor, F ; which is a constant
number in the DE and a uniform random vector in the
proposed MDEVM algorithm.

V. SIMULATION RESULTS

In this section, the proposed MDEVM algorithm is com-
pared with the SMDE and MDESM algorithms. In the
next subsection, the parameter setting and used benchmark
functions are described. Then, the comparison strategies and
metrics for performance evaluations are presented. Later, the
detailed simulations and visualizations are illustrated.

A. Parameter Setting and Benchmark Functions

All the experiments have been conducted on the CEC-2013
testbed [19], which is comprised of 28 benchmark functions
and is an improved version of CEC-2005 [20] counterpart
with additional test functions and modified formula of the
composition functions, oscillations, and symmetric-breaking
transforms. This testbed is divided into three categories
which are uni-modal functions (f1 − f5), multi-modal func-
tions (f6 − f20), and composition functions (f21 − f28) [19].
Parameter setting for all the experiments are presented in
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TABLE I
PARAMETER SETTING FOR ALL CONDUCTED EXPERIMENTS

Parameter Name Parameter Description Parameter Value
D Problems Dimension 100
NP Population Size 5
Cr Crossover Probability Constant 0.9

NFCMax Maximum Number of Function Calls 1e4×D

EV TR Objective Function Error Value to Reach 1e-8
NRun Number of Runs 30

TABLE II
PERFORMANCE COMPARISON OF SMDE, MDESM, AND PROPOSED MDEVM ALGORITHMS ON CEC-2013 BENCHMARK FUNCTIONS. RESULTS OF

THE SUCCESSFUL ALGORITHM FOR EACH BENCHMARK FUNCTION IS HIGHLIGHTED IN BOLDFACE.

F
SMDE MDESM MDEVM Best Value Improvement

Best Std Best Std Best Std SMDE MDEVM
1 2.49E+05 3.45E+04 1.03E+05 3.62E+04 1.31E+04 1.29E+05 1.80E+03% 6.86E+02%
2 7.33E+09 4.35E+09 9.08E+08 6.35E+08 1.57E+08 1.03E+08 4.58E+03% 4.79E+02%
3 3.57E+19 3.26E+25 7.73E+14 1.84E+19 1.74E+11 2.15E+12 2.05E+10% 4.43E+05%
4 3.23E+05 2.18E+05 3.76E+05 5.93E+05 2.49E+05 6.12E+05 2.97E+01% 5.10E+01%
5 5.21E+04 5.57E+04 8.36E+04 5.40E+04 2.33E+04 4.75E+04 1.23E+02% 2.58E+02%
6 5.41E+04 2.08E+04 1.42E+04 9.21E+03 1.21E+03 2.36E+03 4.36E+03% 1.07E+03%
7 7.07E+06 1.56E+10 1.38E+06 1.05E+08 2.03E+04 2.14E+06 3.47E+04% 6.70E+03%
8 2.11E+01 6.60E-02 2.12E+01 4.00E-02 2.13E+01 2.36E-02 -5.75E-01% -4.30E-01%
9 1.49E+02 4.60E+00 1.57E+02 4.20E+00 1.56E+02 1.91E+00 -4.13E+00% 1.22E+00%

10 3.98E+04 9.15E+03 1.17E+04 5.01E+03 2.94E+03 1.75E+03 1.25E+03% 3.00E+02%
11 3.99E+03 8.14E+02 3.51E+03 1.03E+03 2.39E+03 8.02E+02 6.73E+01% 4.70E+01%
12 3.56E+03 7.73E+02 3.57E+03 5.57E+02 2.06E+03 6.39E+02 7.27E+01% 7.28E+01%
13 3.75E+03 9.25E+02 3.41E+03 8.21E+02 2.44E+03 4.66E+02 5.38E+01% 3.98E+01%
14 2.76E+04 1.27E+03 2.04E+04 1.72E+03 1.28E+04 1.04E+03 1.15E+02% 5.92E+01%
15 2.75E+04 1.18E+03 2.38E+04 2.30E+03 3.14E+04 7.96E+02 -1.25E+01% -2.44E+01%
16 3.25E+00 2.52E-01 3.47E+00 2.17E-01 3.43E+00 2.31E-01 -5.39E+00% 9.96E-01%
17 5.99E+03 8.70E+02 5.48E+03 1.11E+03 4.65E+03 4.51E+03 2.87E+01% 1.78E+01%
18 6.02E+03 1.05E+03 5.63E+03 1.38E+03 4.70E+03 4.59E+03 2.81E+01% 1.97E+01%
19 1.39E+07 2.08E+07 8.64E+06 2.58E+07 5.81E+05 3.50E+07 2.29E+03% 1.39E+03%
20 5.00E+01 0.00E+00 5.00E+01 0.00E+00 4.95E+01 2.40E-01 1.01E+00% 1.01E+00%
21 1.33E+04 4.35E+03 9.39E+03 1.58E+03 3.26E+03 1.31E+03 3.08E+02% 1.88E+02%
22 2.92E+04 1.49E+03 2.27E+04 1.44E+03 1.35E+04 1.36E+03 1.16E+02% 6.76E+01%
23 2.82E+04 1.47E+03 2.31E+04 2.28E+03 3.21E+04 6.28E+02 -1.21E+01% -2.80E+01%
24 7.20E+02 1.13E+03 5.74E+02 7.61E+02 5.91E+02 4.56E+02 2.19E+01% -2.81E+00%
25 5.69E+02 2.27E+01 5.81E+02 6.14E+00 5.90E+02 5.57E+00 -3.54E+00% -1.58E+00%
26 6.87E+02 2.49E+03 4.53E+02 4.64E+01 2.49E+02 8.39E+01 1.76E+02% 8.17E+01%
27 4.42E+03 1.31E+03 4.02E+03 9.69E+01 4.27E+03 3.54E+01 3.46E+00% -5.96E+00%
28 2.63E+04 1.85E+04 3.08E+04 3.73E+04 1.94E+04 1.30E+04 3.55E+01% 5.86E+01%

TABLE III
SUCCESSES PERCENTAGE OVER BENCHMARK FUNCTIONS FOR SMDE,
MDESM, AND MDEVM ALGORITHMS REGARDING THE Best METRIC.

THE BEST SUCCESS PERCENTAGE IS HIGHLIGHTED IN BOLD.

SMDE MDESM MDEVM
Success Percentage 14.3% 14.3% 71.4%

Table I adapted from the literature, [14], [19], [29], unless a
change is mentioned. The reported values are averaged for
30 independent runs per function per algorithm to minimize
the effect of the stochastic nature of the algorithms on the
results.

B. Simulation Results Analysis

In Table II, the values (Best) and standard deviation
(Std) of function error values for the SMDE, MDESM, and
MDEVM algorithms are presented. In this table, the value

that the MDEVM algorithm has improved the Best value of
the SMDE and MDESM algorithms is denoted under the
best value improvement (BV I) as a percentage. For each
benchmark function, the best results for each algorithm is
highlighted in boldface. In Table III, the total number of
times each algorithm has outperformed the other algorithms
regarding the Best metric over each benchmark function
is presented as a percentage. The results clearly confirm
that the performance of the proposed MDEVM algorithm
is higher than the SMDE and MDESM algorithms’ with a
success percentage of 71.4%. It is also interesting to mention
that for the benchmark functions in which the proposed
MDEVM method is outperformed, the BVI is not high. In
fact, the average for the SMDE BVI and SMDE BVI in
which the proposed MDEVM algorithm is outperformed are
−3.28E + 01% and −6.31E + 01%, respectively.

Performance of the SMDE, MDESM, and MDEVM al-
gorithms regarding best value so far versus NFCs are
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(c) Benchmark function f22.

Fig. 5. Some sample performance graphs: Best value so far versus number
of funcion calls for SMDE, MDESM, and MDEVM algorithms.

presented in Fig. 5 for uni-modal function f1, multi-modal
function f14, and composition function f22. The results
demonstrate that the SMDE and MDESM algorithms have
stagnated or been trapped in local optimum in early stages
while the proposed MDEVM algorithm, thanks to its vec-
torized random mutation factor, can explore the problem
landscape more with lower stagnation or prematurity risk.

VI. CONCLUSION REMARKS

The mutation factor as well as population size play im-
portant roles in determining the performance level of the
differential evolution (DE) algorithm. A large population
size results in a higher diversity of population but it is
computationally expensive, although it has a lower chance
of stagnation and premature convergence due to its high
exploration capability. In the micro-DE algorithm, where
the population size is small, convergence to a solution is
faster than standard DE algorithm, however with much higher
chance of stagnation and premature convergence. In this
situation, increasing the diversity of the population while
keeping the convergence speed of algorithm can be the key
to achieving a high performance for the micro-DE algorithm.
The crossover module helps to diversify the population but
the mutation vector should also provide higher probabilities
to do so.

In this paper, we have proposed an enhanced version of
the micro-DE algorithm based on the important capability
of the mutation factor to provide diversity in the population,
i.e. the micro-differential evolution using vectorized random
mutation factor (MDEVM) algorithm. In this approach, in
contrast to the standard micro DE, the mutation factor F

is selected randomly for each variable of each individual
in the population. In this case, the population can provide
much higher diversity during the search process. In order
to analyze the performance of the proposed MDEVM algo-
rithm, we have conducted experiments for different styles
of the mutation factor in the micro-DE algorithm, which
are constant mutation factor (standard DE-algorithm), scalar
random mutation factor (randomized mutation factor for each
individual), and the proposed vectorized random mutation
factor (MDEVM algorithm). The simulation results clearly
demonstrate performance superiority of the MDEVM algo-
rithm.

In order to design fast but reliable optimization algorithms
to tackle with real-time applications, mostly in embedded
systems, micro-algorithms can be one of the promising
approaches. Therefore, more research works are required to
be done regarding performance and reliability enhancement
of such algorithms.
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