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Abstract—In algorithms design, one of the important aspects
is to consider efficiency. Many algorithm design paradigms are
existed and used in order to enhance algorithms’ efficiency.
Opposition-based Learning (OBL) paradigm was recently intro-
duced as a new way of thinking during the design of algorithms.
The concepts of opposition have already been used and applied
in several applications. These applications are from different
fields, such as optimization algorithms, learning algorithms and
fuzzy logic. The reported results confirm that OBL paradigm was
promising to accelerate or to enhance accuracy of soft computing
algorithms. In this paper, a survey of existing applications of
opposition-based computing is presented.

I. INTRODUCTION

DESIGNING efficient algorithms is considered to be one
of the most important concerns in computer science.

There are many existing design paradigms which are com-
monly used for designing algorithms. In order to mention some
examples, Divide and conquer algorithms are iteratively or
recursively reducing the given problem into smaller instances
until they could be easily solved. In reduction algorithms, the
aim is to transform the input problem into a known one which
there are some efficient algorithms to solve it. Brute-force
algorithms exploit every possible solution to decide which one
is the best. Recently, a new design paradigm was proposed [1],
which is based on considering candidate and corresponding
opposite-candidate.

“Opposition is concerned with the relationship between
entities, objects or their abstractions of the same nature which
are completely different in some manner” [2]. For example,
hot and cold are description of temperature (same kind) but
completely different. The opposition-based thinking is basic
element of human thinking, it has been used in many fields.
In natural language, opposition is occurred frequently, such
as, north-south in direction and long-short in adjectives. In
psychology, rewards and punishment are two opposite rein-
forcements that are used in the learning process. Antiparticles
in physics are subatomic particles with the same mass but
opposite electric charges and magnetic moment. Similarly in
mathematics, if the probability of an event is p, then the
probability of its contrary is 1-p. Also, the pair (x,−x) are
representing opposite numbers in R.

It had been proven mathematically and experimentally [3]
that utilizing opposition in learning yields more efficient
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algorithms than using only pure randomness. For this reason,
algorithms from different fields were enhanced by using OBL
and achieved promising results. In this paper, a review of
previous applications and algorithms that were enhanced by
OBL is conducted.

The remaining of this paper is organized as follows: An
overview of opposition-based learning is provided in Section
II. In Section III, a review of the applications of opposition-
based learning in soft computing is conducted. Then, open
areas for further research are suggested in Section IV. Finally,
Section V concludes this paper.

II. OPPOSITION-BASED LEARNING

The concept of Opposition-Based Learning (OBL) was
recently introduced by Tizhoosh [1]. The basic idea behind
OBL is that whenever we seek the solution in a direction,
that is beneficial to consider the opposite direction as well.
Many machine intelligence algorithms consider finding the
solution of a given problem as function approximation. Thus,
if the objective is to search for the solution x, the algorithm
makes an estimation x̂ which should resemble the closest value
to x. Such algorithms can be computationally expensive if
the required solution must be very accurate. Starting point
of search can dramatically affect the accuracy of the found
solution (among others due to local maxima or minima) and
the convergence time. In many cases, the starting points are
chosen randomly, such as weights of a neural network, initial
population of evolutionary algorithms, and action policy of
reinforcement agents. If the starting point is close to the
optimal solution, this results a faster convergence. On the
other hand, if it is very far from the optimal solution, such
as opposite location in worst case, the convergence will take
much more time or even the solution can be intractable.
Looking simultaneously for a better candidate solution in both
current and opposite directions may help to solve the problem
efficiently. Following are some important definitions.

Definition (Type-I Opposite Points) [2] – Let x be a real
number defined on the interval [a, b]. The opposite number x̆
is defined as follows

x̆ = a+ b− x. (1)

For a = 0 and b = 1, we have

x̆ = 1− x. (2)

In the same manner, the opposite number in a multidimen-
sional search space can be defined [2].

Let P (x1, x2, ..., xn) be a point in an n-dimensional coordi-
nate system with x1, ..., xn ∈ < and xi ∈ [ai, bi]. The opposite
point P̆ is defined by its coordinates x̆1, ..., x̆n where

x̆i = ai + bi − xi i = 1, ..., n (3)
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Definition (Type-I Super-Opposite Points) [2] – Let P =
(a1, a2, . . . , an) be a point in an n-dimensional search space
with ai ∈ [Xi

min, X
i
max] and P̆ = (ă1, ă2, . . . , ăn) is its

opposite point. Then all points P̆ s are type-I super-opposite of
P when d(P̆ s, P ) > d(P̆ , P ), where d(., .) denotes a metric
such as Euclidean distance.

Definition (Type-I Quasi-Opposite Points) [2] – Let
P = (a1, a2, . . . , an) be a point in an n-dimensional search
space with ai ∈ [Xi

min, X
i
max] and its opposite point P̆ =

(ă1, ă2, . . . , ăn). Then all points P̆ q are type-I quasi-opposite
of P when d(P̆ q, P ) < d(P̆ , P ), where d(., .) denotes a metric
such as Euclidean distance.

Definition (Type-II Opposite Points) [2] – Assuming the
function f(x1, x2, . . . , xn) is not known, but ymin and ymax

are given or can be estimated. Let y = f(x1, x2, . . . , xn) ∈ R
be an arbitrary function with y ∈ [ymin, ymax]. For every
point P = (a1, a2, . . . , an) the type-II opposite point P̆ =
(ă1, ă2, . . . , ăn) is defined by

ăi = {x|y̆ = ymin + ymax − y}. (4)

Opposition-Based Learning (OBL) [1] – Let f(x) be the
function in focus and g(.) a proper evaluation function. If
x ∈ [a, b] is a candidate guess and x̆ is its opposite value, then
the learning continues with x if g(f(x)) > g(f(x̆)), otherwise
with x̆.

III. OPPOSITION-BASED COMPUTING

Opposition-based learning concepts were applied to enhance
various problems in different soft computing fields. In this
section, a review of the OBL-based algorithms is presented.
These algorithms are categorized into five main areas, namely,
reinforcement learning algorithms, neural networks, optimiza-
tion algorithms, fuzzy logic, and miscellaneous applications.
Each area is reviewed in a separate subsection.

A. Reinforcement Learning

Reinforcement Learning (RL) is an approach in artificial
intelligence that was inspired from the concepts of actions
and rewards in psychology. Several researches were attempted
to incorporate OBL concepts to enhance RL algorithms.

An enhancement to reinforcement learning based on oppo-
sition based computation was proposed by Tizhoosh [4] in
2005. The main idea of the algorithm is to consider actions
and opposite actions and/or opposite states. This makes the
traversal of the states of the environment shorter, which mean
faster convergence time. The proposed algorithm has been
extended to Q-learning algorithm and was compared with the
parent algorithm using two sizes of the grid world problem.
The results of OQL was better than the results for QL.

Tizhoosh [5] tested OQL by introducing three versions of
that. The first one, the opposition based algorithm considers
the opposite action ă and opposite reward r̆ for each taken
action a with reward r. The second variant used a second
learning step ᾰ which is defined as a decreasing function
of the number of episodes. The third algorithm considered
the opposite actions only for a limited number of episodes.
Experiments were conducted to compare these three variants of

OQL along with QL algorithm. Three sizes of the grid world
problem were used for benchmarking. Algorithm 2 achieved
the best results among the three proposed variants and was
much better than QL in term of convergence speed.

Shokri et al. [6] proposed an opposition-based Q(λ) al-
gorithm (OQ(λ)). In this algorithm, eligibility traces for the
actions and opposite actions, which called opposition traces,
are used. The updating mechanism for opposite action is the
same as mechanism used in [5], but in this paper opposition
traces were introduced. OQ(λ) was compared with the con-
ventional Q(λ) using three sizes of the grid world problem,
and performed better in terms of running time and success rate.
However, this approach could not work with non-deterministic
environments. This was solved in [7] by using non-markovian
update of the opposition traces, the new algorithm is called
opposition-based Q(λ) with non-markovian update, NOQ(λ).
This is performed by introducing a weight W ∈ [0, 1] to
the opposition update. For the applications which have no
clear definition of opposite action, the weight is set low and
it is gradually increased. On the other hand, in problems
which have clear definition of opposite action the weight is
set to 1. NOQ(λ) was tested against both Q(λ) and OQ(λ)
again using three sizes of grid world problem, and NOQ(λ)
achieved the best results in overall. In order to have trade-
off between exploration and exploitation in the processes of
non-markovian update of the opposite actions; Shokri et al. [8]
suggested an increasing function of the weight. Thus, the value
of W is increasing as the iterations increase. The rationale
behind this is that, the values of state-action in later stages is
more meaningful. The modified NOQ(λ) was tested using a
simple elevator control problem, which is dynamic and non-
deterministic, and was compared with Q(λ). Lower average
running time and overall average iteration were achieved using
the modified NOQ(λ).

Mahootchi et al. [9] investigated the use of opposition-
based reinforcement learning for the management of single
reservoir operations. Two algorithms were proposed, first one
using type-I opposition and the second one using type-II. A
multilayer perception was used for the purpose of function
approximation to find type-II opposite actions. Only opposite
actions were considered, but opposite states were not.

In his PhD [10], Mahootchi investigated the enhancement
of several RL algorithms and their applications in storage
management. His extended algorithms are Q − learning,
Q(λ), sarsa, and sarsa(λ).

The use of opposition-based reinforcement learning for
image segmentation was proposed by Sahba et al. [11]. In
order to segment prostate ultrasound images, thresholding
is performed, then morphological opening was applied to
remove the remaining artifacts and noise. The segmentation
was performed locally, so the input image was divided into
sub images. The task of RL agents was to determine both
threshold and structuring element for each sub-image. The
use of opposite actions in updating the Q-map could make
the learning faster. The proposed algorithm was tested on 20
medical images and compared with the standard Q-learning
algorithm. In terms of convergence speed, the proposed algo-
rithm presented much better results, but it got accuracy lower



than the standard Q-learning algorithm.

B. Neural Networks

Artificial Neural Networks (ANN ) is a sub-field of machine
learning which was introduced in order to mimic the way
humans learn. ANN received too much attention and have
many models and configurations.

Ventresca and Tizhoosh [12] investigated the use of op-
position based computation to improve the performance of
back-propagation algorithm. In their approach, they considered
the opposite of the transfer function for a subset of neurons.
The opposite transfer function of f(x) defined as f̆(x) =
f(−x). The opposite network was defined as a network which
has same weights as the original network and at least one
neuron having the opposite transfer function. Four common
benchmark problems were used to test the proposed algorithm
(OBP ). The results were compared with the results of back-
propagation algorithm (BP ). OBP outperformed BP in terms
of speed on the four problems, and achieved better accuracy
in three of them.

An improvement to Back-Propagation Through Time
(BPTT ) algorithm, which is a discrete-time recurrent neural
network training algorithm, was proposed based on opposi-
tion based computation. Ventresca and Tizhoosh [13] used
the opposite neural network defined in [12] for Elman re-
current topologies [14] to construct Opposition-based Back-
propagation Through Time (OBPTT ) algorithm. The al-
gorithm was dynamically determining the opposite transfer
function at runtime. OBPTT algorithm was tested using three
benchmark problems, and results were compared with BPTT .
The results obtained by OBPTT were at least as good as
those obtained by BPTT . Furthermore, OBPTT was better
than BPTT in terms of learning reliability and stability and
also convergence rate.

Ventresca and Tizhoosh [15] utilized the opposition-based
computation concept to improve the performance of large
scale neural networks that have hundreds or thousands of
parameters. During the learning process, in each iteration a
set of neurons were selected based on a probabilistic rule.
The selected neurons were assigned the opposite transfer
function. The formed network represent the opposite network.
In each iteration, both current and opposite networks were
evaluated and the network that have best results was labeled
as the current network. Using five benchmark problems, this
technique was tested against two variants of Back-propagation
(BP ) algorithm, namely, BP with adaptive learning rate and
BP with adaptive learning rate and momentum. Opposite
version achieved the best results and was the fastest on all
benchmark problems. In addition, it had the most reliable
results.

C. Optimization

The problem of minimization or maximization of a func-
tion is called optimization problem, it is an important field
in all science and engineering fields.. Because of its im-
portance, many different algorithms have been proposed to
solve optimization problems efficiently. In this subsection,

the extensions of three categories of optimization algorithms
are reviewed. The categories are differential evolution algo-
rithms, particle swarm optimization, and other optimization
techniques.

1) Differential Evolution: Differential Evolution (DE) is
a population-based optimization technique which uses evolu-
tionary concepts. Some researches were attempted to utilize
opposition concepts to improve performance of DE.

As pioneers, Rahnamayan et al. [16], [17], [18] proposed
the inclusion of opposition-based computation in evolutionary
algorithms. They proposed a mean of population initialization
based on opposition concept. This is performed by initializing
a random population P (n) and calculating the corresponding
opposite population OP (n). Then, the fittest individuals are
selected from union set of P (n) and OP (n). In addition to
that, based on a jumping rate, dynamic opposite population of
the current population is calculated and the fittest individuals
are selected in the same manner. An extensive experimenta-
tions were preformed in [18] using 58 benchmark functions
in order to test the performance of ODE. Sets of experiments
were conducted to study the effect of dimensionality, opposite
points, population size, different strategies of mutation and
jumping rates, and the speed and robustness. In these experi-
ments, ODE was compared with DE and achieved superior
results. In addition, ODE was compared with FADE, and
achieved much better overall results. In [19], Rahnamayan
and Wang investigated the application of ODE for large scale
optimization problems. Comparison was conducted between
ODE and DE using seven large scale benchmark functions
(500 and 1000 dimensions). Results of ODE was much better
that that of DE in both accuracy and convergence speed.

Additional modification of this algorithm was introduced
by locally improving the fittest member in the current popu-
lation [20], [21]. This is performed by calculating difference-
offspring (newbest) of the fittest member (best) of the cur-
rent population, and then calculate the opposite of newbest
(op_newbest). Current fittest members are replaced by the
fittest members of the set {best, newbest, op_newbest}. This
modified algorithm was tested on nine well-known mini-
mization functions with added variable amount of noise,
and compared with DE algorithm. opposition-based version
outperformed DE on eight functions in terms of convergence
rate with the same success rate.

Rahnamayan et al. [22] enhanced the previous methods
by replacing opposite points with quasi-opposite points. The
authors proved that a quasi-opposite point has a higher
probability of being closer to the solution than an opposite
point. The same procedure of population initialization and
generation jumping that proposed in [18] was used, except
that quasi-opposite points were used and a smaller jumping
rate is employed. This algorithm (QODE) was compared with
both ODE and classical DE algorithms using 15 benchmark
functions with two different dimensions (total of 30). QODE
outperformed both ODE and DE in terms of number of
function calls and success performance on 22 functions. DE
achieved marginally better average success rate than QODE
and ODE.

The jumping rate for the previous algorithms is a pre-



defined constant value (i.g., Jr = 0.3 for ODE and Jr = 0.05
for QODE). Variable jumping rate was introduced by Rah-
namayan et al. [23]. The authors introduced two types of time
varying jumping rates, namely, linearly increasing and de-
creasing functions. The former has lower jumping rate during
exploration, and higher jumping rate during exploitation, and
vice-versa for the latter. Based on 15 benchmark functions,
it had been found that, the linearly decreasing jumping rate
achieves better performance than both constant and linearly
increasing jumping rates..

Opposition-Based DE (ODE) was applied for the task
of finding the best threshold value for images [24]. As an
optimization problem, the following objective function was
defined

f(T ) =
M∑
i=1

N∑
J=1

|Iij −B(T )ij | , (5)

where M and N are the dimensions of the image I , and
B(T ) is the corresponding thresholded image by the threshold
value T . By this way, an image thresholding task is modeled
to a minimization problem. In order to solve problem faster,
ODE with very small population size (Np = 5), which
called micro-ODE, was used. The algorithm is tested against
the well-known kittler algorithm and its non-opposition-based
version (micro-DE) by utilizing 16 test images. micro-ODE
achieved better average accuracy than both Kittler and micro-
ODE and also it was faster than micro-ODE by 13%.

Similar to ODE works, Peng et al. [25] utilized opposition-
based learning in the initialization of the population for a
Multi-Objective Differential Evolution. In order to extend
DE to solve multi-objective problems, the concepts of domi-
nance, non-dominated sorting and crowding distance metric
were used. The performance of the algorithm (OMODE)
was tested using five two-objective benchmark functions and
compared with six different algorithms, namely, NSGA-II
[26] (real and binary coded), PAES [26], SPEA2 [27], and
IBEA [27], [28]. Also, OMODE was tested on Earth-March
transfer problem and compared with NSGA-II. In both test
sets OMODE achieved the best overall results

To solve the problem of tuning chess program, Bos̆ković
et al. [29] used DE with the concepts of adaptation and
opposition. Population initialization was performed by using
opposition points as described in [18]. Opposite concept was
also utilized in current population using a jumping rate. Adap-
tation was performed by using the rand/2 mutation strategy
and adaptive mutation scale factor F . A simplified chess
evaluation function of the chess program BBchess was used to
test the algorithm. The algorithm was tested using opposition
initialization only and also by using opposition through entire
evolutionary process. By using opposition initialization only,
convergence of the algorithm was better at the beginning,
while the use of opposition through the whole algorithm
obtained poor convergence at the beginning, but same results
at the end.

Omran [30] investigated the using of OBL to improve
Particle Swarm Optimization (PSO) and Barebones Defer-
ential Evolution (BBDE) [31]. For PSO, the particle with
the lowest fitness is replaced by its opposite particle in each

iteration, this is performed by using opposite point. Similarly,
in BBDE the individual with lowest fitness is replaced by the
opposite individual. The improved iPSO and iBBDE were
compared with PSO and BBDE, respectively, using seven
benchmark functions. In general, the improved algorithms
outperformed PSO and BBDE.

Free Search Differential Evolution (FSDE) was introduced
by Omran and Engelbrecht [32]. FSDE was the result of hy-
bridization of of Free Search (FS) [33], Differential Evolution
(DE), and opposition-based learning. The concept of sense
was taken from FS, and mutation operator from DE. In each
iteration, the solution x that has lowest fitness is replaced by
its opposite point x̆, defined as

x̆ = LB + UB − r.x (6)

where LB, UB, and r are lower bound, upper bound, and
a uniformly generated random number in [0,1], respectively.
This algorithm was tested on ten benchmark functions and
compared with both DE and one of its variants, BBDE.
FSDE outperformed DE on seven functions and outper-
formed BBDE on eight functions.

Omran and Salman [34] proposed a new population-
based meta-heuristic optimization algorithm called CODEQ.
CODEQ is a combination of concepts from chaotic search,
opposition-based learning, Deferential Evolution (DE), and
quantum mechanics. Population in this algorithm is initialized
randomly, and then in each iteration t a trial vector, vi(t) is
created by mutating the parent vector xi(t) as,

vi(t) = xi(t) + (xi1(t)− xi2(t))ln(
1

u
), (7)

where u ∼ U(0, 1), and xi1(t), xi2(t) are randomly selected
indices where i1 6= i2 6= i. vi(t) will replace xi(t) if it has a
better fitness value. After that, a new vector is generated for
each iteration as,

w(t) =

{
LB + UB − r.xb(t) if n ≤ 0.5
xg(t) + |xi1(t)− xi2(t)|.(2c(t)− 1) otherwise

(8)
where r ∼ U(0, 1), LB and UB are lower and upper

bounds, respectively, xb(t) is the least fit vector, xg(t) is the
fittest vector. If the fitness of the generated vector wi(t) is
better than the worst vector xb(t), then it will replace it. The
algorithm is repeated until it satisfy a stopping condition. The
performance of CODEQ was tested using five constrained
problems. The results were compared to other techniques.

An evolutionary algorithm, biogeography-based optimiza-
tion (BBO) [35] was extended to oppositional BBO
(OBBO) by utilizing opposition-based learning (OBL) [36].
The authors introduced a new opposition-based method called
quasi-reflection. Mathematical proof was provided to show that
quasi-reflection point has a higher probability of being closer
to the solution than an opposite point. The opposite population
was computed during generation jumping as described in
[18]. Using 16 benchmark functions, OBBO algorithm was
compared with BBO. The former had a success rate of 94%,
while the latter had 70%. Also, OBBO had 98% less average
function evaluations compared to BBO.



2) Particle Swarm Optimization: Particle Swarm Optimiza-
tion (PSO) is a stochastic population-based optimization
algorithm inspired from the social behavior of bird flocking or
fish schooling. Several approaches were considered in order to
utilize OBL for improving PSO algorithms.

Han and He [37] introduced OPSO by utilizing OBL to
enhance swarm initialization, generation jumping and improv-
ing the swarm’s best member. First, swarms are initialized
with random positions and velocities. The opposite swarm is
calculated by computing the opposite of position and velocity.
The fittest of swarm and opposite swarm is selected. The same
procedure is applied to current generations using jumping rate
and dynamic constriction factor (CF ) in the calculation of
opposite points as follows

oxij = Lj + Uj − CFij .xij , (9)

where

CFij = 1− λrij , (10)

where rij is a Cauchy random number, and λ is starting
at 1.0 and decreased every 50 generations. Best members
jumping was applied as described in [18]. The modified
algorithm (OPSO) was tested against PSO algorithm using
six benchmarking functions. OPSO achieved a better perfor-
mance in terms of convergence speed and global search ability
(i.e., escaping from local optima).
OBL with a Cauchy mutation [38] were used to enhance

PSO [39]. Opposition concept was introduced during the
initialization and improving current populations. In every
generation, Cauchy mutation was applied to the global best
particle. It helps to decrease the probability of being trapped
in a local optimum. Four unimodal and four multimodal
functions were used to compare the performance of OPSO
and PSO. Faster convergence was achieved by OPSO for
unimodal functions and better global search for the multimodal
functions. Just in one function, OPSO was trapped in local
optima.

Wu et al. [40] extended the previously proposed Compre-
hensive Learning Particle Swarm Optimization (CLPSO) [41]
to Opposition-Based CLPSO (OCLPSO). Again opposition
concept was used in population initialization as in [17].
Opposition-based exemplar selection also was introduced.
First, two particles are chosen from the population. The fitness
of the selected particles and their opposites are compared.
The best fitter particle is used as the exemplar to learn
from that dimension. Based on 10 benchmarking functions,
OCLPSO performance was compared with CLPSO. The
reported results achieved by OCLPSO was much better.

Omran and al-Sharhan proposed three variants of
opposition-based PSO [42]. The first variant (OPSO) used
opposition concepts just for population initialization as de-
scribed by [17]. Second variant, which called improved
OPSO (iOPSO), utilized opposition for every iteration by
replacing the particle with lowest fitness value by its opposite.
The third variant, which named improved PSO (iPSO), is
the same as iOPSO , but without opposition-based population
initialization. The performance of the three proposed variants

were compared with PSO using eight benchmark functions. In
general, iOPSO and iPSO outperformed PSO and OPSO
in both accuracy and convergence speed. The results of
iOPSO and iPSO were very close.

Jabeen et al. [43] tested the effect of using opposition-based
population initialization in more details. Four benchmark func-
tions were used to test OPSO. The algorithm is compared to
three variants of PSO, namely, PSO1, PSO2, and PPO
[44]. Opposition-based algorithm outperformed PSO1 and
PSO2 on all four functions and PPO on three of them.
The O − PSO algorithm is also compared with a PSO that
initialize its population randomly (2−PSO). The comparison
was conducted using three functions. O − PSO achieved its
results in less number of iterations that 2− PSO.

A variant of PSO that uses velocity clamping (V CPSO)
was extended by using OBL (OV CPSO) [45]. Opposi-
tion was employed during the initialization and iteration
phases. Performance of OV CPSO was compared with PSO,
V CPSO and opposition-based PSO with Cauchy Mutation
(OPSOCM ) by using eight benchmark functions. In overall,
OV CPSO achieved a better performance than PSO, V CPO
and OPSOCM .

3) Other Optimization Methods: Simulated annealing (SA)
is a well-known global search algorithm. An enhancement
to the vanilla version of SA was proposed using an oppo-
sition based technique [46] (OSA). The proposed algorithm
calculates a neighborhood and an opposite neighborhood of
the current solution and evaluates the quality of both, then
the best solution is chosen as the current one. OSA was
compared with vanilla version of SA and achieved better
accuracy and convergence rate. Furthermore, OSA results
were more reliable than SA results.

Malisia and Tizhoosh [47], [48] investigated the use of
OBL ideas for Ant Colony System (ACS). The authors
proposed five variants for employing opposition concept to
extend the construction phase of ACS, namely, Synchronous
Opposition, Free Opposition, Free Quasi-Opposition, Opposite
Pheromone per Node (OPN ), and Opposite Pheromone per
Edge (OPE). In addition, an extension to the update phase
was investigated in [48].

D. Fuzzy Set Theory

Fuzzy set is a generalization of the classical crisp set. Rather
than considering an element to either belong or does not
belong to a set , a membership of the element is calculated to
determine its membership degree. The notion of opposition
have always been a part of fuzzy sets since it has been
introduced.

Tizhoosh [49] defined the preliminary concepts of opposite
fuzzy sets. Following definitions were provided for a basic
framework: opposite fuzzy set, type I opposite fuzzy sets,
type I super-opposite fuzzy sets, type I quasi-opposite fuzzy
sets, type II opposite fuzzy sets, and opposition-based fuzzy
inference systems (OFIS). Based on the defined concepts,
a new image segmentation approach was proposed. The al-
gorithm defines a set A as dark pixels, and then calculate
the entropy of A. Then, iteratively defines Ă, the opposite



fuzzy set of A with different sizes starting from the brightest
region, calculates entropy of Ă and the difference between
the entropies. The minimum difference indicates that Ă is the
most probable opposite of A. The algorithm was tested on
four breast ultrasound images and the results were compared
to the results of Otsu algorithm.

An extension to the previous method was proposed by
Tizhoosh [50]. First, the center of the object of interest is
determined interactively by user input. A window is con-
structed around the central point, and its size is increased
incrementally in each iteration. For each iteration, dark pixels
fuzzy set is determined for current window, and its opposite
bright fuzzy set is found. The location of the window that has
a maximum entropy difference between the two fuzzy sets is
found. Then, the threshold value is calculated as the average
of representative numbers of both fuzzy sets of the selected
window. The performance of this algorithm was tested using
eleven prostate ultrasound images.

E. Other Applications

Fuzzy c-mean clustering for data with tolerance (FCM−T )
was proposed by Kanzawa et al. [51]. Two variants of the
algorithm were defined, namely, standard type FCM − T
(sFCM − T ) and entropy regularized type (eFCM − T ).
The essence of both algorithms is solving an optimization
problem which minimize the objective function with respect
to membership (µ) , centers (v), and tolerance (ε). In this way,
tolerance is determined such that the data heads to the center
of the cluster. In addition, the authors proposed another two
algorithms that maximize the objective function with respect to
tolerance. Thus, the data is moving away from cluster center. If
the first two algorithms and the latters obtains same clustering
result, it could be considered as reliable results, otherwise it
is unreliable.

Khalvati et al. [52] considered the use of opposition-based
concept to enhance window memoization. The case study was
gray-scale morphological algorithm which uses 3× 3 non-flat
structuring elements. A lookup technique which uses multi-
thresholding values was developed to increase reusing rate.
Each time a lookup is performed on a window, the response
of the opposite window is calculated. This method presents a
reduction in the number of calculations.

IV. FURTHER RESEARCH DIRECTIONS

OBL can be applied to wide range of areas. As it can
be observed from previous section, extended methods usually
obtain very promising results. Still, it is early to say that the
possibilities of employing OBL concepts is fully exploited.
The door is widely open for many researches to utilize the
opposition concept in other soft computing areas.

Optimization algorithms received the most attention from
researchers. The modified algorithms achieved better results
than the parent algorithms. More studies on enhancing of Par-
ticle Swarm Optimization and Ant Colony System is required.
In addition, many studies of utilizing OBL to enhance other
existing optimization algorithms, such as gradient descent and
hill climbing, can be conducted.

Learning algorithms, either supervised or unsupervised,
have good potential to enhance by OBL. Already Neural
Networks and Reinforcement Learning was extended and
tested. But still, new methods can be investigated; such as, the
definition of opposite networks. Other types of networks could
be studied, such as Cascade-Correlation and Neuro-Fuzzy
networks. Embedding OBL in other learning algorithms, such
as Support Vector Machines, Hidden Markov Model and
clustering algorithms can be investigated.

Utilizing OBL in image processing applications is an area
with many possibilities. The opposite of a pixel can be defined
with respect of color, intensity, location, or direction. Some
of the suggested applications are image thresholding and
segmentation, edge detection and registration.

More extensive studies on opposite fuzzy sets and its
applications are required.

V. CONCLUSIONS

There are several existing paradigms of thinking through
the process of developing algorithms, such as brute-force
search, dynamic programming, and greedy method. Thinking
of opposite possibilities during the design of algorithms is
a recent suggested paradigm. A review of the algorithms
which used opposition approach was presented. The reviewed
algorithms achieved very promising result, which indicates that
OBL can be beneficial if applied in an efficient way. OBL
concepts can be applied in many research and applications
areas, such as optimization algorithms, learning algorithms,
fuzzy sets and image processing. In each area, there are
many OBL-based potential ideas to enhance algorithms. It is
still early to say that all applications of OBL is reasonably
exploited.
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