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Opposition-based Learning (OBL) is a new concept in machine learning, inspired from the opposite relationship
among entities. In 2005, for the first time the concept of opposition was introduced which has attracted a lot of
research efforts in the last decade. Variety of soft computing algorithms such as, optimization methods,
reinforcement learning, artificial neural networks, and fuzzy systems have already utilized the concept of OBL to
improve their performance. This survey has been conducted on three classes of OBL attempts: a) theoretical,
including the mathematical theorems and fundamental definitions, b) developmental, focusing on the design of
the special OBL-based schemes, and c) real-world applications of OBL. More than 380 papers in a variety of
disciplines are surveyed and also a comprehensive set of promising directions are discussed in detail.

1. Introduction

The concepts of opposition widely exist in the world around us, but
it has sometimes been understood in different ways. For instance,
opposite particles in physics, antonyms in languages, complement of an
event in probability, antithetic variables in the simulation, opposite
proverbs in the culture, absolute or relative complement in the set
theory, subject and object in the philosophy, good and evil in animism,
opposition parties in politics, theses and antitheses in dialectic, and
dualism in religions and philosophies. It seems that the explanation of
different entities becomes a tough task without using the concept of
opposition such as the east-west, south-north, and hot-cold which
cannot be described separately [216,205].

Opposition-Based Learning (OBL) is a novel research field which
has already attracted a recognizable interest in the past decade. Many
soft computing algorithms have been enhanced by utilizing the concept
of OBL such as, Reinforcement Learning (RL), Artificial Neural
Networks (ANN), Fuzzy Systems, and variant optimization methods
such as Genetic Algorithms (GA) [97], Differential Evolution (DE)
[202,274], Particle Swarm Optimization (PSO) [121,122],
Biogeography-based Optimization (BBO) [267], Harmony Search
(HS) [96], Ant Colony System (ACS) [66,67], Gravitational Search
Optimization (GSO), Group Search Algorithm (GSA), Artificial Bee
Colony (ABC) [116], Simulated Annealing (SA), etc. In 2005, the
fundamental concept of OBL [297] was proposed which considers the
current estimate (guess) and its corresponding opposite simultaneously
to find a solution efficiently. When the main goal of an algorithm is
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finding the optimal solution for an objective function, considering an
estimate and its opposite simultaneously can be beneficial to enhance
the performance of the algorithm. The advantages of applying the OBL
concept have been investigated to define the transfer function and
weights of neural networks, creating candidate solutions of evolution-
ary algorithms, and action policy of reinforcement agents.

Since January 2005, more than 400 publications have been
published on the OBL concept. These research works have been
published in conferences, journals and books which are in machine
learning or soft computing. Among these papers, 60% are journal
papers, 38% are conference papers, and 2% books/thesis. Fig. 1 shows
the number of publications and citations per year obtained by the web-
site, Thomson Reuters (formerly ISI) Web of Knowledge. Two surveys
on OBL have been published in [7,359] which surveyed 52 and 138
papers but they do not covered many research works which were
published in the recent years. Therefore, based on the fast progress of
research works on OBL and its applications in the science and
engineering fields, it is motivated us to prepare an up to date
comprehensive survey including the latest theoretical and develop-
mental researches and promising future directions of OBL. This paper
attempts to provide a global overview of research works on OBL from
different perspectives. Some of research works focus on the mathema-
tical proofs and theoretical definitions to investigate and use the
benefits of OBL; some are on the special developments for various
schemes of using OBL in the machine learning methods; and others are
on the different applications of OBL in the various science and
engineering applications such as power systems, pattern recognition
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Fig. 1. The number of publications and citations by year.

and image processing, identification problem, bioinformatics, and
medicine, etc.

The remainder of this paper is organized as follows: Section 2 is
described the basic concepts of OBL. Section 3 is theoretical research
works on opposition schemes. Developmental research works con-
ducted on OBL is described in Section 4. In Section 5, the applications
of OBL is presented. Finally, the paper is concluded in Section 6.

2. Opposition-based learning: basic concepts and pioneering
research works

In this section, first we summarize the basic concepts of OBL. Then,
pioneering research works on using OBL concept in the machine
learning algorithms such as EA, RL, ANN, and Fuzzy Systems are
explained.

2.1. Basic concepts

The primary opposition concept first was expressed in the Yin-Yang
symbol (Fig. 2) in the ancient Chinese philosophy [205]. This symbol
indicates the duality concept in which black and white are Yin
(receptive, feminine, dark, passive force) and Yang (creative, mascu-
line, bright, active force), respectively. Also, Greek classical elements of
nature patterns (Fig. 3) described the opposition concepts such as fire
(hot and dry) vs. water (cold and wet), earth (cold and dry) vs. air (hot
and wet). Cold, hot, wet, and dry indicate nature entities and their
opposite entities [205]. It seems that the concept of many entities or
situations in the real-world is described by using the opposition
concept. In fact, using the opposition concept makes the explanation
of different entities much easier. Pair-wised opposites such as the east,
west, south, and north cannot be defined alone and only they
can explain in terms of one another. Therefore, the computational

Fig. 2. Early opposite concept was mentioned in the Yin-Yang symbol [205].
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Fig. 3. The Greek classical elements to explain patterns in the nature [205].

opposition concept [297] was inspired from the opposition concept in
the real-world and the opposite numbers were simply defined in [297]
as follows.

Definition 1 (Opposite number). [297] Let x € [a, b] be a real
number. Its opposite, ¥, is defined as follow:

¥=a+b-x, (€8]

The extended definition for the higher dimension is defined in
[296,297] as follows.

Definition 2 (Opposite point in the D space). [297] Let x (x; ,..., xp) be

a point in D-dimensional space and x; € [a;, b;], i =1, 2,..,D. The
opposite of x is defined by X(% ..., Xp) as follow:
i,-=a,-+b,-—x,- (2)

In fact, they indicate that for finding the unknown optimal solution,
searching both a random direction and its opposite simultaneously
gives a higher chance to find the promising regions. It is reasonable
that if the current estimates (guesses) are far away from the unknown
optimal solution, computing their opposites leads to the opposite
direction toward to the unknown optimal solution. Note that the basic
opposite point is computed same as a reflected point when it is
calculated through the center point ((x + %+...+xp)/2) [1].

The above definition of the opposite point is called as Type-I
opposite. The Type-I opposite is defined according to the relationship
between points in the search space without considering their objective
values. Fig. 4 indicates x and its opposite, ¥, in one, two, and three-
dimensional spaces.
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Fig. 4. The point x and its corresponding Type-I opposite in one, two, and three-
dimensional spaces [210] in the interval [a;, b;].

In [296], the Type-II opposition was defined according to the
objective space of a problem as follows.

Definition 3 (Type-II Opposite Points). [296] Suppose that for the
function f (x;, %, ...,Xp), ¥, and y,,, are predefined or can be estimated.
Let y = f (x, %,...,xp) € R be an arbitrary function with y € [y, Ve
For every point x(x,...,xp), the Type-II opposite point X (¥,...,¥p) is
defined as follow:

I = XY = i tan—} 3)

Fig. 5 indicates Type-I and Type-II opposite points for a sample
function landscape.

There are many research works which have employed the OBL
concept to enhance the performance of searching, learning, or optimi-
zation algorithms. We categorize all these research works into three
main areas: theoretical, developmental, application oriented research
works. The following sections provide a brief overview of the OBL-
based algorithms and the new concept and description of OBL. In the
following sections, we simply mention Type-I opposition point as the
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Fig. 5. Definition of Type-I versus Type-II opposition for a sample landscape [296].

opposite point. Type-II opposition requires a priori knowledge of the
objective space so in black-box problems, it is very complicated to
compute Type-II opposition. Fig. 6 presents the major types of Type-I
opposition which can be utilized for Type-II opposition as well; and the
following subsections provide a brief overview of them.

2.2. Pioneering research works

The first effort of utilizing the OBL concept in an optimization
method was proposed by Rahnamayan et al. in 2006 [208]. As a case
study, OBL was used in the DE algorithm to improve its performance,
the resulted algorithm is well-known as the Opposition-based DE
(ODE). In the proposed scheme, OBL is applied in two stages of the
classical DE algorithm; during initialization of population and evolu-
tionary process. In the initialization step, the initial population is
randomly generated (line 3) and simultaneously the opposite popula-
tion is calculated by computing the opposite of each candidate solution
in the population (line 4). Then, two populations, the initial population
and its corresponding opposite, are combined and the fittest solutions
are selected as the initial population (line 5). During the evolutionary
process, a jumping rate (i.e., jumping probability) is defined (line 12)
which based on the jumping rate, the opposite of each variable in the
candidate solution is computed dynamically. First, the minimum and
maximum values of each variable in the current population are utilized
to calculate the opposite of the current population (line 14). Then, both
the current and its opposite are combined and the fitter solutions are
selected (line 16) as the mentioned approach in the initialization phase.
Dynamic opposite for the candidate solution x in the evolutionary
process is calculated as follow:

Xij=ai + bi — xij, (O]

where a; and b; are maximum and minimum values of each variable in
the current population. In addition, opposition-based population
jumping is applied based on a predefined jumping rate, J,. Algorithm
1 presents all main steps of the ODE algorithm.

Algorithm 1. ODE scheme (NP, J,, MAXNFC).

1: //NP, J,, and MAXNFC are the population size, jumping rate,
and the maximum number of function evaluations,
respectively.
// Opposition-Based Population Initialization;
Generating the initial population uniform randomly, pop;
Calculating the opposite population, opop by using Eq. (2);
Picking NP fittest solutions from pop| Jopop as the initial
population;
NFC=1;
while NFC < MAX_NFC

Mutation;

Crossover;
10:  Selection;

ghen

o %2R
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Fig. 6. The major variants of Type-I opposition which similarly can be extended to the Type-II opposition.

11: // Opposition-Based Jumping;

12: if rand (0, 1) < J, then

13: // rand(0,1) generates a random number in [0, 1];

14: Calculating opposite population of current population,

opop (NFC) by Eq. (4);

15: NFC = NFC + NP;

16:  Picking NP fittest solutions from pop|Jopop as the current
population;

17: end if

18: NFC = NFC + NP;

19: end while

In [210], the comprehensive experiments were performed to verify the
performance of ODE by using a benchmark function set including 58
different global optimization problems. The effect of dimensionality,
opposite points, population size, different strategies of mutation and
jumping rates were investigated and analyzed. The achieved results
indicated that ODE obtains superior results than DE for high-
dimensional problems and also, ODE performs better when the
population size is increased. In addition, for the jumping rate, the
range of [0.1,  0.4] was suggested for a black-box optimization problem.

In 2005, the first attempt of enhancing RL method was made by
Tizhoosh [298] by using the OBL concept. OBL is extended to the
action a in the Q-learning algorithm. For finding opposite actions, a
degree of opposition O for two actions ¢ in the state s; and a, in the
state s; are defined as follows:

O(si» @) = O(s;, @) ]
maxi (Q (si» ax), Q(sj> a)) ) | 5)

Oals;, alsy) = n (s, s5p) X [1 - exp(—

210G, a) = Osj, a)l
¥, max(Q(si, ap), Q(s;, a))”

n(s;s Sj) =1-
O]
After determining the opposite action d, the opposite reward 7 is also
calculated. An opposite learning step ¢ is defined as /1 — é for the

iteration i; n is the total number of iterations. Q-value of the opposite
action d is computed as follow:

(s, d) = Q(s, d) + alF + ymax(Q(s', a") — Q(s, @)] )

It can be seen the difference of Q-matrix updating with n actions and m

a a an
S1 1
) Q(s2,a2) $)
Sm Sm

(a) Q-matrix for RL

05

states between the RL and opposition-based RL from Fig. 7 for the
action a, in the state s,.

Also, the first effort in using the OBL concept for backpropagation
ANN was proposed in [307]. The opposite transfer function of f (x) is
defined by multiplying all weights of neurons by —1; i.e., f(—x). The
opposite network contains the same weights with the original network,
but at least one neuron is utilizing the opposite transfer function. Fig. 8
shows the hyperbolic tangent function and its opposite.

The first effort of defining the opposite fuzzy sets was proposed by
Tizhoosh [299]. For the description of the opposite fuzzy sets, a fuzzy
set A ¢ X with membership function g, (x) is given by:

A= {0 )k e X, ulx) €0, 11}, uy () = £ (x, a, 5), ®

where g, (x) is equal to one for V a; € a. Then, the opposite of a fuzzy set
is described as follows.

Definition 4 (Opposite fuzzy set). [299] The opposite of a fuzzy set
A C X is defined as:

A= {@ pzx)k € X, pui(x) €10, 11}, 9)

where p;(x) = f (x, d, 5) and the vector a and the vector & are the points
on the universe of discourse such that u(a) = u(d) = 1. Also, other
schemes of opposite points such as super, quasi, and Type-II opposite
points are described as follows.

Definition 5 (Super opposite fuzzy set). [299] The super opposite of a
fuzzy set, A%, is defined with the spacial membership function,
ps () = f (x, &, 5%), in which @ and §° are the super opposite of a
and 6 in the fuzzy set A with the membership function
Hy (X)) = f(x, a, 6).

Definition 6 (Quasi opposite fuzzy set). [299] Quasi opposite fuzzy of
a set, A’, is defined with the spacial membership function,
Hia(x) = f (x, @4, 6%, in which G4 and 5 are the quasi opposite of a
and § in the fuzzy set A with the membership function
Hy(x) = f(x, a, 5).

Definition 7 (Type II opposite fuzzy set). [299] Type II opposite of a
fuzzy set, Ay, is defined with the spacial membership function,
Hi, () = f (x, dy, 1), in which d, and & are the type II opposite of a
and § in the fuzzy set A with the membership function
Hy(x) = f(x, a, 5).

A new image segmentation algorithm was introduced according to
the defined opposite fuzzy sets in [299]. In this method, first the set A is

v v v

Ay Ay A A i

Qlsy, &) Qls2,)

(b) Q-matrix for opposition-based RL

Fig. 7. Q-matrix updating.
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Fig. 8. Hyperbolic tangent function ranh (x) and its opposite, ranh(—x).

defined as dark pixels in the image. Then, the opposite fuzzy sets are
calculated iteratively with different sizes, starting from the brightest
region. The differences among the entropy of a fuzzy set and its
opposite sets are computed and the set with the minimum entropy
difference is selected as the opposite set for the set A.

3. Theoretical research works on opposition schemes

This section briefly describe some research works which focus on
defining new opposition types or mathematical theorems to indicate
their usefulness. After the first efforts of using the OBL concept in the
machine learning algorithms, the new opposition-based algorithms are
being extended rapidly. In the following subsection, the new definition
of opposition schemes and corresponding theorems are briefly de-
scribed. These research works are summarized as in Table 1. Also, the
section is organized into three main subsections including research
works on EA, RL, and ANN.

3.1. EA-related research works

Several research works have been conducted in utilizing OBL
concept and extending the new schemes of OBL to enhance EA
algorithms. Also, mathematical theorems were derived to demonstrate

that opposite candidate solutions has higher probability to be closer to

Table 1
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an unknown optimal solution than the randomly generated candidate
solutions.

3.1.1. Theorems related to OBL

In [210,216], some theorems are mathematically proved to con-
clude the advantage of using the OBL concept. Also, they conducted
some experiments by utilizing the OBL concept in the framework of EA
algorithms to enhance their performance.

The following theorem indicates that the opposition of a point is
unique.

Theorem 1 (Uniqueness). [210] In the D dimensional space, for each
point x(x,....xp) (x; € [a;, b;]), there is a unique opposite point
X(X,...,%p) according to the mentioned definition
Xi=a;+b—x,i=1,2,...,D.

The following theorem indicates the closeness probability of a
candidate solution and its opposite to the unknown optimal solution
is equal.

Theorem 2. [210] Suppose that f (x) is an unknown function with the
optimal solution x,(x; # (a + b)/2) and x is a candidate solution and its
opposite is %. Then,

¢ -1
Prx — x| < Ix — xl) = % 10)

where Pr() is the probability function.

The below theorem shows that by assuming an objective function is
a monotone, the opposite candidate solution ¥ has a higher chance
(12.5%) to be closer to an unknown optimal solution compared to the
second random candidate solution x,.

Theorem 3 (Second opposition). [210] Suppose that g(x) is
increasingly monotone function and x, ¥, and x, are the first
random candidate solution, the opposite point of x; and the second
random candidate solution, respectively. Then,

Pr(g(x) < max{g(). g()}) = % an

The following theorem is derived to indicate that without any
assumption, the opposite candidate solution X has higher probability to

A summary of major research works on definitions of opposition schemes and mathematical proofs of opposition.

Author

Brief explanation of research work with theoretical contribution

Rahnamayan et al. [210]
Rahnamayan et al. [216]
Rahnamayan et al. [209]
Tizhoosh et al. [302]
Ergezer et al. [77]

Wang et al. [329]

Tang and Zhao [286]
Ao [12]

Kushida et al. [133]

Hu et al. [105]

Ergezer et al. [75]

Liu et al. [148]
Rahnamayan et al. [206]
Seif and Ahmadi [245]
Seif and Ahmadi [245]

Park and Lee [192]
Ergezer and Simon [76]
Rahnamayan et al. [214,213,215]

Xu et al. [355]
Shokri et al. [263]

Dhabhri et al. [59]
Ventresca and Tizhoosh [311]

Having a higher chance by utilizing random numbers and their opposites mathematically was proved.

Some theorems and definitions were extended to intuitively indicate that utilizing the opposite of a candidate solution is beneficial.
Quasi-oppositional DE (QODE) was proposed as a uniform random point between the center point and the opposite point.
Super-opposition scheme and Type-II opposition concept were introduced.

Fitness-based opposition (FBO) and quasi-based reflection were introduced based on the concept of the quasi opposite point.

They introduced three different schemes of the generalized OBL (GOBL).

The modified type of OBL was proposed by conducting opposition on multiple points.

The modified OBL concept was proposed as a second mutation for DE algorithm.

An archived OBL was introduced based on the archive best solutions.

A partial opposition-based learning (POBL) scheme was proposed.

The mathematical theorems were proved to analyze the effect of using three OBL types (opposition, quasi opposition and quasi-reflection).
Rotated-Based Learning (RBL) was proposed by rotating any specified deflection angle.

The centroid-opposite was proposed according to the gravity center of population.

The mathematical theorems and proofs of the opposition concept were introduced for binary optimization problems.

Comprehensive opposition (CO) was introduced by using of Quasi-opposition and reflection and defining two new concepts of extended
opposition (EO) and reflected extended opposition (REO).

A stochastic OBL using a beta distribution with the selection switching and the partial dimensional changing schemes was proposed.
The fitness-based quasi-reflection concept (FQR) was introduced.

The concept of center-based sampling was proposed and indicated that the probability of closeness for the center point/region to an
unknown solution is higher than other points.

Opposite-Center Learning (OCL) was proposed based on minimizing the distance of the pair including the original candidate and the
opposite point to the global optimum.

Oppositional target domain estimation (OTE) was proposed to reduce the search and navigation area.

The OBL concept was modified and applied to DE algorithm for the design of a beta basis function neural network (BBF).
Mathematical theorems and proofs were developed to investigate the effectiveness of employing opposite transfer functions.
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be close to an unknown optimal solution compared to the second
random candidate solution x,.

Theorem 4 (Central opposition). [210] Suppose that f(x) is an
unknown function with x(x,...,xp), x; € [a;, b;l, i =1,2,...,D and at
least one solution x(x,, ...,Xs,) and x(xi, ...,xp), ¥(¥,...,Xp), and x, are
the first random candidate solution, the opposite point of x; and the
second random candidate solution. Then,

Pr(d (¥, x;) <d(x, x,) > Pr(d(x, x,) <d(X,x)), (12)

where d(.) is the Euclidean distance.

The mathematical proofs in [210] have two shortcomings: (1) they
established only for one dimensional space, (2) they don't provide an
intuitive interpretation. In [216], some simpler mathematical proofs
were given to intuitively indicate the benefit of using opposition
concept according to distance to the optimal solution in the high
dimensional search space. Some theorems and definitions are de-
scribed to show that the distance to an unknown optimal solution by
the opposition-based sampling is less than the random sampling
according to the Euclidean distance. The expected distance between
two random points x, y € [a, b] against x and X is computed as follow:

Ellx =yl =LB,L=b—-a, E[lk — %] = L/2 13)

They calculated the three following probabilities, the probability of the
candidate solution x, its opposite ¥, and the second random candidate
solution r being closer to some unknown optimal solution s € S,
described by:

P.=Pr(d(x,s) <dX,s) Ad(x,s) <d(r,s)), (14)
Pi=Pr(d(®, s) <d(x, s) Ad(F, s) <d(r,s)), (15)
Buwa = Pr(d(r,s) <d(X, s) Ad(r,s) <d(x,s)), (16)

First, in one, two, and three dimensional space, the probabilities of P,
Py, and B, are calculated as 0.375, 0.375, and 0.25, respectively. Then,
these probabilities are mathematically derived for N dimensional
search space by the following theorem.

Theorem 5 indicates that considering the random candidate solu-
tion and its opposite is more likely compared to the paired random
candidate solutions according to Euclidean distance in an N-dimen-
sional hypercube search space.

Theorem 5 (Central opposition). [216]Suppose that HP be an D
dimensional hypercube with edge lengths Ly >0 and HP be an
inscribed hypercube having a common center to HP with following
edge lengths:

ﬂ, if D=1
0 )
) if D<LI1 17)

Then, the volume of HP” and B, will be 1/2D + 1) and 0.25,
respectively.

Also, some examples of symmetric and non-symmetric evaluation
functions are analyzed to confirm the proof of the above theorem.

3.1.2. Quast appositions and their corresponding theorems

In [209], the quasi opposite of the point x was introduced as a
uniform random point generated between center point and the
opposite point ¥. Fig. 9 shows x, X, and the quasi opposite point (x%)
in one, two, and three-dimensional spaces.

They prove mathematically in the following theorem that the
probability of the quasi opposite point x? being closer to the unknown
optimal solution is higher than the opposite point x.

Theorem 6. Assume that x., x,, and x? are a random uniform
candidate solution, its opposite, and its quasi opposite, respectively,
and x, is the unknown optimal solution. Then

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

Prld®1, x;) <d(X, x)] > 172, (18)

where d(.) is the distance from x,;, optimal solution. This theorem is
proved for one-dimensional space, but in the same way it can be
proved for the higher dimension space.

Two new definitions, fitness-based opposition (FBO) and quasi-
based reflection, were introduced by using the concept of the quasi
opposite point [77]. The quasi-reflected point x, for the candidate
solution x is defined as a random point uniformly distributed between
¢ =(a+b)2 and x. Fig. 10 shows ¥, x, and x, in one-dimensional
space.

FBO is defined by embedding a reflection weight in a generated
quasi-reflected solution between the current candidate solution and the
median of population to determine the amount of reflection based on
the solution fitness value. For a candidate solution x, its FBO, xg,, is
defined as follow:

{x + (median — x)k if x < median
Xfor =

median + (x — median)k otherwise ’ (19)

which k € [0, 1] is a uniform random number. Furthermore, they
indicate that the quasi-opposite point is usually closer than an opposite
point to the optimal solution in one-dimensional search space by
computing the corresponding probability. Also, they analyzed the
performance of quasi-reflection and quasi-opposite through simula-
tions and demonstrated that their performance is improved with
increasing the dimension of problems. In addition, the new concepts
are applied to BBO algorithm to increase its performance. In [75], the
mathematical proofs were provided to analyze the effect of using three
opposition types (opposition, quasi opposition and quasi-reflection) in
EA algorithms. They illustrated that the closeness probability of the
different types of opposite points to an unknown solution is more than
a random candidate solution. In the 1D search space, the closeness
probability of the different types of opposite points to an unknown
solution x,,, compared to a random candidate solution x is derived as
follow:

11

PrlxX, — xop! < e = xppl] = —,

" 9
Pr{iX, — Xopl < Ix = xppl] = g, 16

(20)

where %, and X, are its quasi-opposite and quasi-reflected, respec-
tively. Also, the closeness probability of the quasi-reflected and quasi-
opposition to unknown solution x,,, are higher than its opposite:

. . 9
Pr{lX, — xopl <%, = Xppl] = E,

(21

. o 1
Pr{iX, — xopl < 1%, = Xxp ] = E’

X, is the opposite of the point x. They indicate that the quasi-reflection
has higher closeness probability compared to other OBL types. They
compared the performance of oppositional-based learning on GA, DE,
and BBO algorithms. In [76], the fitness-based quasi-reflection concept
(FQR) was introduced which controls the amount of reflection based on
the fitness of the individual. FQR for a candidate solution x is given by:

_fx+(c-x)k if x<c
Kar = c+@x—o -k if x>c 22)

where c is the center point and k is the rank of solution based on its
fitness in the population. Different reflection types of k is designed by
using various complementary functions for k. They provide the
mathematical proofs to compute the closeness probability of x4, to
an unknown solution. This probability for the 1D space is defined as a
function of the reflection weight k; i.e., (6 — k)/8. Using simulation, they
indicated the closeness probability of x4, is increased on higher
dimensions.
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Fig. 9. Opposite-point and quasi-opposite region (marked by dashed lines) for 1D, 2D, and 3D search spaces [214].
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Fig. 10. Opposite-point and quasi-reflected region x,,..

3.1.3. Schemes for binary search space and their corresponding
theorems

Seif et al. [245] introduced the mathematical theorems and proofs
of the opposition concept for binary optimization problems. For binary
spaces, the Hamming distance is utilized. The opposite point ¥ for a
binary point x (x, %, ...,xp), x; € {0, 1} is defined as:

VvV X (x, %,...,xp) with x; € {0, 1}, foreach ¥, =1 — x; in )?(X], X, ...,Xp),

(23)

They proved as a theorem that every point x, x € {0, 1} has a unique
opposite point based on the above definition.

Also, in the following theorem they prove that the opposite points
have a higher chance to be closer to an optimal solution based on the

Hamming distance.

Theorem 7. Assume that x(x,%,....xp), x;€ {0,1} and
Xy (Xr1s X2, .-, Xrp)s  Xri € {0, 1} be the first and second random
candidate solutions in the binary solution space, respectively. Then

Pr(min ]| x, x; I, 1% x I} < min{ll x, x; I, | X, % (1H)> 24

Pr(min{| x, x; ||, I %, x5 1} < ming{]x, x ||, | %, x5 [1}),

(25)

where x, is the optimal solution.

This theorem describes briefly that the candidate solution x and its
opposite ¥ are more likely to be closer to the optimal solution than the
first and second random candidate solutions, x and x,. Furthermore,
they utilize OBL during population initialization and also during the
evolutionary process to enhance the performance of binary GSO
algorithm.

3.1.4. Comprehensive opposition and its corresponding theorems

A new OBL concept, Comprehensive Opposition (CO), was intro-
duced in [244] by using of Quasi-opposition and reflection and two new
concepts of Extended Opposition (EO) and Reflected Extended
Opposition (REO). In following, corresponding definitions and theo-
rems are briefly described. Let x be a solution in n-dimensional space,
its EO, ¥°, and REO, ¥/, are defined as follows:

i

i

5o = {rand(x,-, b)) x;i < (a; + b2

rand (a;, X;) x; > (a; + b))/2, fori=1...n, (26)
e — rand (x;, b)) x; > (a; + b)I2
T \rand (ai, x)) x; < (a; + b)I2, fori=1..n, 27)

The following theorems 8, 9, and 10 indicate that the mentioned
opposition schemes generate points closer to a solution than a random
candidate solution, according to the expected distance and values of the
closeness probability. They proved the following theorem which
computes the expected values of the probability for the quasi-opposite
(%), quasi-reflected opposite (%,), extended opposite (%), and
reflected extended opposite (¥,.,) being closer than a random candidate
solution to an unknown optimal solution, x*.

Theorem 8. [244] Suppose x be a random candidate solution, then
the expected values of the probability of X, Xy, X0, and %, being
closer than a random candidate solution to x* are as follows:

E (Pr (%, — x*l < Ix — x*)) = 3/16, (28)
EPr (I, — x1 < Ix — x*1)) = 11/16, (29)
E(Pr(li, — x*1 < Ix — x*1)) = 9/16, (30)
E(Pr(1X,, — x*l < Ix — x*)) = 7/16, 31)

Also, the expected distance of a random candidate solution x and its
variant opposites are calculated in the following theorem.

Theorem 9. [244] Assume that x has the uniform distribution in
[a, b]. Then, the expected distance x and its various opposites are
calculated as follows:

E(lx — %) = (b — )18, (32)
E(x — %,1) = (b — a)/8, (33)
E(x — %)) = 3(b — a)/8, (34)
E(lx — %,0) = 5(b — a)/8, (35)

After defining ¥¢° and ¥*° and their corresponding theorems, CO is
defined to improve the candidate solution and control the diversity of
the population. Let the probabilities of selected opposite points X, %,

X, and X, for the candidate solution x be P.,, P, F,, and P,
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respectively. Then, CO is defined as follows:

Xreos rand < By,

iqrv R‘eo < rand < Preo + er

X0, Beo + By <rand < By + By + By,

Xeos  Beo + By + Fyy < rand <1 (36)

Xeo =

Also, they considered the problem of finding the optimum value of
Peo, By, By, and P, and suggested some specific values for them. The
following theorem is derived to show that why a comprehensive
opposite point is more effective than an independent random point.

Theorem 10. [244] Assume that x, is the second random uniform
solution. For a random candidate solution x and its comprehensive
opposite X,,, then:

0.505 < E(Pr(IX,, — x*l < Ix — x*)) < 0.67875, 37)
E(Pr(lx, — x*l < Ix — x*)) = 0.5, (38)

E(Pr (%, — x| > Ix, — xI)) while ¢/T < 11/36, (39)

where t is the iteration number and T is the total number of iterations.

In addition, a Markov chain model of the opposition-based
metaheuristic optimization algorithm (OBA) is described to indicate
that with probability one, OBA converges to a global optimum. Finally,
experiments were conducted based on OBA for enhancing PSO and
GSA algorithms.

3.1.5. Other OBL schemes

In [302], super-opposite points were defined as all points ¥* where
d(¥*, x) > d (%, x), where d(.,.) is a metric such as Euclidean distance.
Then, the super-opposite relationship for the point x is defined by:

la, X) x> @
¥ edla, bl - {x} x= —(‘“2“”)
%, b] x< @b

2 (40)

The first version of the generalized OBL (GOBL) was defined for the
candidate solution x in [a, b] in [328] as ¥ =A — x where A is a
computable value and X is in [A — b, A —a]. In [329], the new
definition of GOBL is described as follow:

X=k(a+b)—x, 41)

where k is a real number. Three different schemes of GOBL are defined
based on the value k as follow:

1. Symmetrical opposite candidate solutions in GOBL (GOBL-SS) are
generated by k = 0, ¥ = —x.
2. A symmetry of opposite interval (GOBL-SI) is defined by

i . _ atb
k=5,%=2 -

2 2
3. Random GOBL (GOBL-R) is defined as X = k(a + b) — x, where k is
a uniform random number in the interval [0, 1].

Based on the definition of GOBL, it is possible to violate the box-
constraints, x; € [a;, b;], a random number is generated within [a;, b;] as
GOBL value of x;.

In [286], the modified type of OBL was proposed by conducting
opposition on multiple points in which two points are recombined and
then its opposite is computed. For a candidate solution P, another
solution P; is randomly generated and the opposite of combined
candidate solution is computed as follows:

OP/[ =a+b-— (m]P,’ + mZ'P“), (42)
where m; and m, are two uniform random numbers in [0, 1], and

my + my = 1. The modified OBL concept was defined as a second
mutation for DE algorithm in [12]. The modified version of OBL is

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

defined as follow:

0. = aj+bj_-xijs if JGSQ {1,2,...,}1}
Y X otherwise (43)

After DE algorithm generates the offspring population, the modified
version of OBL is applied in the half worst of offspring population. An
OBL was defined in [358,377] based on the current best candidate
solution, xp., for the candidate solution x as follows:

beext - X (44)

It is applied to the population initialization and during the evolution
process of DE. In [133], an archived OBL was introduced based on the
archive best solutions. In this method, first the difference between the
current best candidate solution ‘xbest’ and the selected random
candidate solution is calculated as 6 = xp.;; — x,. The archived opposi-
tion for point x; is computed as follows:

M;(j) = (@i (j) + b:i())/2,
Xi(j) = 2{k-M;(j) + (1 = k)-(M: () + 0p) } — x: (), (45)

where «;(j) and b;(j) are the minimum and maximum values for the
dimension j of the population. A partial opposition-based learning
(POBL) scheme was proposed in [105] which the opposition of some
dimensions is computed according to a random uniform probability; a
random value between 0.1 and 0.3. In this method, the original point,
the opposite point, and partial opposite point are compared and the
better one is selected. In [148], Rotation-Based Learning (RBL) was
proposed by rotating any specified deflection angle. The opposition of a
point can be defined as 180 degrees rotation of the original point in 2D
space so this concept is extended to compute the rotation with any
arbitrary degree between -180 and 180. The rotation point
¥ = (g, ...,z)) for the point z is defined in the dimension i as follow:

up =z — (@ +b)2, vi=@—a)bi—z), (46)
u = u; X cos p — v; X sin, 47)
=@+ b2+t p=pNO D (48)

Then, RBL is embedded into DE with the same scheme as ODE. Park
et al. [192] proposed a stochastic OBL using a beta distribution with
the selection switching and the partial dimensional changing schemes
which integrated it with a modified DE. By using the beta distribution,
two types of opposition, convex and concave, were defined based on the
parameters of the beta distribution. The concave opposite of the point
x; is defined with a beta distribution whose parameters @ and g are both
greater than 1 as follow:

Xij = (bj — a)). Beta(a, p) + q; (49)
o= spread. peak, if mode < 0.5
"\ spread, otherwise (50)
= spread, if mode < 0.5
" | spread. peak, otherwise (51)
1+N (0,0.5)
spread = S
normDiv ’ (52)
(spread — 2)mode + l’ if mode < 0.5
X spread (1 — mode)
peak = - B
2 — spread spread — 1 . otherwise
spread spread. mode (53)
mode = —(aj *+ b= %) = 4
bj = a (54

where Beta(a, ) is a beta distribution with the parameters a and g,
N (0, 0.5) is a Gaussian distribution. The normDiv is the normalized
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diversity which is defined as follow:

e
normDiv = — Y CD (x;(t), POP(t))
NP ; (55)

CD(x;(t), POP(1)) = (_EPO}{ZI;@([)#Ed(C, X (1)), (56)

| D 2

1 x;i(t) — ¢
(e, xi(1) = |— (;)

\/ D /Z:; bj = qj (57)

The convex opposition is defined with different strategy of defining
mode and spread such that @ and f in the beta distribution should be
smaller than 1. The mode and spread in the convex opposition is
defined as follow:

u spread = 0.1</normDiv + 0.9,
bj —a (58)

Also, the opposition is calculated as the partial dimensional scheme for
some selected dimensions by utilizing the random strategy to choose
the subset of dimensions. In addition, a selection switching scheme is
employed such that if the population diversity is greater than a certain
threshold, the best individuals are selected from the population and the
opposite population via a method similar to (u + 1) selection in the
evolutionary strategy (ES). Also, if the diversity is smaller than the
certain threshold, the worst half of individuals is replaced by their
opposites, similar to (u, 4) selection in ES.

mode =

3.1.6. Center-based sampling

As it can be seen from the definitions and theorems, the center
point is a critical point Fig. 11. In [216], the intuitive explanation of the
benefit of different opposite points was provided by using the center
point in an interval. The concept of center based sampling was
introduced by Rahnamayan and Wang [214,213,215]. They indicated
that the probability of closeness for the center point to an unknown
optimal solution is higher than other points and in the higher
dimensions, this probability value increases extremely. A center-based
region was introduced which includes points in the interval [0.2, 0.8] in
an interval [0, 1]. By using Monte-Carlo simulations, the probability of
closeness to an unknown solution is calculated for different candidate
solutions of the interval. Fig. 12 indicates the obtained results of
Monte-Carlo simulations. In addition, they compared the center-point
sampling with opposite points and confirmed that the center point has
the higher closeness probability to an unknown optimum solution than
the opposite points. Also, quasi opposite points are presented as a

x: current candidate x*: the opposite candidate

x x
[ [ [ |
-b -a a b
x* = -x
(a) GOBL-SS
x* X
e e

I I I |
-(b-a)2 (b-a)l2  a b

x* = (at+b)/2 - x
(b) GOBL-SI

x* X
[ [ [ [
k(a+b)-b k(a+b)-a a b
x* = k(at+b) -x
(¢) GOBL-R

Fig. 11. Three schemes of GOBL.
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Fig. 12. Probability of closeness of candidate-solution to an unknown solution for
different points in the interval [214]. Utilizing a vector with the same value for all its
dimensions on the space diagonal is a proper way to provide 2D plots for the D
dimensional search space.

promising and reliable evidence for supporting the proposed center-
based sampling concept.

In [206], a new type of OBL was proposed according to the gravity
center of population instead of using the minimum and maximum
boundary of all candidate solutions in a population. In the centroid
opposition-based different evolution (CODE), the centroid-opposite
point for the candidate solution x; is defined as follow:

f,’ =2*M — Xis M = (.)C] + X2+...+XNP)/NP, (59)

where NP is the number of candidate solutions. In [355], Opposite-
Center Learning (OCL) was proposed based on minimizing the distance
of the pair including the original candidate and the opposite point to
the global optimum. The opposite center point p,, for the starting point
p, = (1, %,...,xp) is defined as follow:

Poc =argmin/ . lp—pIlfpdp, T={p:llp,—nll>llp—nl}
) P E

(60)

where p, is the global optimal solution and ||. || is a distance metric
which in [355] two distance metrics, Euclidean and squared, were
considered.

3.2. Theoretical research works on RL

In [263], oppositional target domain estimation (OTE) was pro-
posed to reduce the search and navigation area in the target domain
estimation. In target domain estimation, the environment is an n
dimensional grid and each cell of grid represents a state. An action
changes the state coordinates by the value A. In OTE, two types of
evaluative feedback are computed; reward and punishment. After
taking action, if the agent is located at a smaller distance to the target,
the agent receives the reward r; otherwise the agent receives the
punishment p. The different types of opposition for the target domain
estimation are defined as following.

Definition 8 (Opposite State). [263] Suppose that the environment is
an n dimensional state space (cZ) therefore each state can be
represented as an D dimensional point s(sj,...,sp) and
b;<s;<¢ Vie€l,..,D. The opposite state is defined as follow:

S‘I,' = b,‘ +c -8 (61)

Definition 9 (Opposite Action). [263] Suppose that an action changes
the coordinates of a given state in a certain direction by the value A
(s" = s + A). The opposite action § is able to change the coordinates to
the opposite direction by the same value (s’ = s F 4).

An OTE theorem is proved which indicates when an agent in the
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state s receives the same evaluative feedbacks by taking an opposite
actions in opposite states while at least for one action, the agent
receives a reward, the target is located in a reduced sub-space between
s and §.

3.3. Theoretical research works on ANN

Ventresca et al. [311] developed mathematical proofs to investigate
the effectiveness of employing opposite transfer functions. The theore-
tical analysis were extended to consider the benefit of opposite
networks in two situations; network initialization and early stages of
the learning process. They proved that OTFs are symmetrical trans-
formations in the weight space and with supposing a minimal random
network as the base case for the transformation, they represented a
unique input-output mapping.

4. Developmental research works

This section presents those research works which focus on the
design of strategies to employ OBL in the machine learning algorithms.
Developmental research works are categorized in four classes: optimi-
zation, ANN, RL, and fuzzy system methods.

4.1. Optimization methods

Many optimization methods have been developed by utilizing the
OBL concept in a) the initialization (population-level), b) during
evolution, or c¢) designing mutation and crossover steps (operation-
level). In this section, optimization algorithms are surveyed in three
different classes evolutionary computation, swarm intelligence, and
multi-objective optimization.

4.1.1. Evolutionary computation

In [309], a modified SA was proposed based on OBL scheme which
computes both a neighborhood and an opposite neighborhood of the
current candidate solution and selects the better one of them as the
current candidate solution. In [205], two types of time varying jumping
rate, linearly increasing and decreasing functions, were introduced.
The varying jumping rates are designed in a special way such that
during exploration, the linearly increasing jumping rate has the lower
value and during exploitation it has the higher value and vice versa for
the linearly decreasing jumping rate. The results indicated that the
linearly decreasing jumping rate performs better that other jumping
rates (including a constant value for the jumping rate). In [212,211],
ODE was applied to solve large scale benchmark functions (i.e., D=500
and D=1000). The results confirmed that ODE can achieve better
results than parent algorithm, DE. Ventresca et al. [310] introduced a
new probability update rule and sample generation procedure based on
OBL for the population-based incremental learning algorithm. OBL is
applied to control and improve diversity and also, they gave some
mathematical proofs, definitions and theorems to analyze the effect of
diversity based on OBL on the performance of algorithm which are
briefly described as follows. It is assumed that the distance between
two samples be the Hamming distance therefore the diversity of the
population p is defined as follow:

n i-1

Vip) = Z Z dpam (pi> 1)),

i=1 j=1

(62)

where p; and p; are samples of the population p. A comparison set S is
defined as the cartesian product A X B = {{a, b)la € A and b € B}.
Let U denotes universal set and subset A € U, they defined the
opposite set as A= {{a;, d;j)la; e A and d; € U}; a; and a; are given
candidate solutions and its opposite solutions €A. The diversity of the
opposite set A is defined as Z:”:l duam (p;» B;)- In following, the concept
of proved theorems are briefly described. It is mathematically proven

10
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that in the k samples including /2 random candidate solutions and k/2
their opposite candidate solutions, diversity of opposite solutions is
greater than only random candidate solutions. They assume that M is a
probability matrix in d-dimensional binary space, R¢, and sets Ry, R,,
and R, are in ®¢ with IR/l = IRl = IRl if G; = R{JR, and G, = RJR,,
then V (G,)=V (G)). Finally, they applied the generated sampling based
on an increased diversity strategy to the population-based incremental
learning algorithm. A scalability test was conducted for GOBL used in
DE algorithm in [330] on the benchmark functions with 50, 100, 200,
and 500 dimensions. In [331], the diversity of ODE was analyzed to
indicate how the generation jumping step of ODE increases the
diversity to find more potential regions and the elite selection step of
ODE accelerates the convergence speed. Two steps of ODE are divided
into three states, before opposition, after opposition, and after selec-
tion. Then, the diversity of each state is computed to demonstrate their
diversity. OBL was embedded in HS algorithm [90] to enhance the
mutation operator of the HS. After generating a new candidate solution
by mutation operator, the opposition of new solution is calculated and
the best one of them is selected as a new candidate solution. In [184],
the quasi-opposite of the worst harmony is computed to enhance a HS
with a quadratic interpolation. In [352], they conducted a different
strategy of using OBL such that for each candidate solution, after
computing its opposite, the opposite solution is compared with only its
parent solution to choose the better one of them. In [366], the opposite
points were used based on combining multiple points [286] in the
population initialization phase and during the evolution process with a
jumping rate. The opposite point OF for an individual 7 is defined as
OP, = 2Xposs — (M *P, + my*P), where x4, is the best candidate solution
of the current population and m; and m, are two uniform random
numbers such that m; + m, = 1. A centroid-based initialized JADE was
proposed in [127] by using a centroid based strategy in the initial
population. In the random initial population, three points are selected
and their center is calculated as:

xi =+ x+ x3)/3, (63)

and this process is continued for other three points and N, center
points are obtained. N, center points are sorted corresponding to their
objective values and 30% worst center points are selected as a
subpopulation (SP). SP is divided to two subpopulations; SP1 including
1 first worst points of SP and SP2 including 2 second worst points of
SP. Then, the individuals of SP2 are reflected through individuals of
SP1 by the following formula:

Xpj =X+ 0.6. (x; — x1), (64)

which x is the first member of SP2 and x; is the mean of first two
individuals of SP1. Then, these reflected candidate solutions are
replaced with the worst 10% of center points and the obtained
population is considered as an initial population. In [79], a Center-
Based Differential Evolution (CDE) was proposed based on a center-
based sampling strategy. In CDE, the opposition of each individual in
the population is calculated and the opposite population is constructed.
Then, the center-based population is created by generating a random
candidate solution between each candidate solution and its opposite.
The NP fitness solutions from current population and the center-based
population are selected as current population. This strategy was
applied in the initial step and during evolution step with a predefined
jumping rate. In [107], GOBL was applied to enhance the performance
of the compact DE. When the trial candidate solution is generated, the
opposition of offspring is computed by GOBL. The trial candidate
solution and its opposite are compared and the best one would be
selected as a candidate solution of the next generation. In [5], four
schemes were proposed for using OBL in the shuffled differential
evolution (SDE). In the first scheme, OBL is utilized with the same
strategy like OBL scheme in ODE algorithm. The second scheme uses
OBL as an extra step to improve the individuals in each memeplex in
the SDE algorithm. In third scheme, in addition to using OBL in the
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process of the evolution, it applies OBL after a complete iteration of the
evolution process in the SDE. The last version compares each indivi-
dual with its opposite and selects the best one and also applies OBL
after a complete iteration of the evolution process. A center-point-
based SA was proposed in [80] in which center-point is utilized as the
initial starting point for the search. In [385], the elite OBL (EOBL) was
introduced which computes GOBL of the elite candidate solutions to
compute the opposite point. In [375], OBL was employed to find the
proper value for DE parameters, (F, CR), by using two pools to store
values of parameters and their opposite values. Wang et al. [322]
introduced a parallel DE algorithm (GOjDE) which employs GOBL to
enhance its performance. GOjDE is implemented on the multiproces-
sors of GPU in parallel to decrease effectively the computational time.
In [197], triple and quadruple comparison-based methods were
designed to enhance the performance of DE algorithm by taking the
benefit of using opposite points as well the paired comparison of the
ordinary DE. Triple comparison methods include three comparisons:
(1) the target, trial, and the opposition of trial candidate solutions, (2)
the target, trial, and the opposition of target candidate solutions, (3)
the target, trial, and random candidate solutions. In the quadruple
comparison-based method, four candidate solutions are compared
including the target, trial, the opposition of trial, and the opposition
of target candidate solutions. Using opposite points with adaptive
variants of differential evolution were considered in [305] and the
results indicate that applying OBL into adaptive DE algorithms is not
effective like non-adaptive DE algorithms. Pei et al. [196] applied OBL
to tune an adaptive parameter of adaptive support vector regression
(SVR) which approximates the fitness landscape to enhance the
evolutionary computation. The tuned adaptive parameter by using
OBL indicates the topological structure of the higher dimensional
search space. In [91], the Harmony Search (HS) method with dual
memory was proposed which uses OBL-based secondary harmony
memory. The opposition concept for solving combinatorial problems
such as graph-coloring and TSP was defined in [74,357]. Two type
opposition concepts in the discrete space are defined based on the kind
of a combinatorial problem: (1) for open path problems, in which their
final node may be disconnected from the first node, such as the graph-
coloring problem, or (2) for closed path problems, their final node is
connected to the first node, such as the TSP. In the open path
problems, first proximities among nodes are computed as the number
of edges between two nodes. Based on proximities among nodes, the
opposition of a path can be the path with the maximum proximity
between adjacent nodes and the minimum proximity between further
nodes. A greedy approximation of finding the opposite path was
proposed which depends on the combinatorial problem. For closed
paths, they proposed the opposite cycle path by representing a closed
path on a circular path. After using a circular representation for the
path, a clockwise direction (CW) of opposite path is defined as
following.

Definition 10 (The opposition of a closed path). [74,357] Suppose
that P and n are an even node cycle and the number of nodes in a
graph. The CW opposite path (P{") is defined as:

p=I1,2,...,n], (65)

PV =11, 14n/2,2,2+n/2,...,0n12 = 1,n =1, n/2, n (66)

In [242], a DE algorithm based on Type-II OBL concept, ¥, was
proposed by using the center-based interpolation. In the initialization
step, the interpolation employs the computed objective functions of the
initial population to estimate the corresponding Type-II variables.
During evolutionary process, it is updated by using the examined
candidate solutions in the optimization algorithm. Also, they compared
two opposition methods; min-max and centroid. By Monte-Carlo
simulation, it was indicated that the centroid-based opposition can

11

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

be used for Type-II OBL and also it performs better than min-max-
based opposition according to the computed probability of their
success. Type-II and Type-I opposition methods are utilized in the
initialization and the evolutionary process of a DE algorithm like
similar scheme used in ODE but the fittest solutions are selected from
union of x, ¥, and X;.In [120], the OBL concept was integrated into
the cooperative co-evolutionary (CC) algorithm to solve large scale
problems. In the CC framework, when a subcomponent of variables is
optimized, the opposition of variables in the subcomponent is calcu-
lated for a candidate solution and other remaining variables are
constant.

In [149], an enhanced GODE algorithm, AGODE, was introduced
by using an adaptive GOBL approach. An adaptive parameter of
jumping rate, p,, is defined according to the success rate of the
opposition operator. When the opposition obtains the better solutions,
the p, value is increased; otherwise it is decreased. In [47], OBL,
chaotic search, and quantum methods were combined in DE to
determine a proper selection for the crossover factor, scaling factor,
and mutation operator. Qin et al. [203] utilized OBL in a HS which
performs independent HS with respect to multiple random groups.
Deng et al. [58] proposed a local search to increase the performance DE
which uses an orthogonal crossover [137,340]. Some trial candidate
solutions are generated by the orthogonal crossover and then their
quasi-opposites are computed and the best one from all generated trial
solutions is selected. In [351], in each iteration, the population is
randomly divided into three subpopulations and then DE, OBL, and
GSA are applied on only one of three subpopulations to generate the
new trial candidate solutions. In [169], the uniform randomly candi-
date solutions and their opposite were used in a surrogate-assisted DE
to enhance the off-line training for constructing surrogate model. In
[327], some experiments were conducted to compare the performance
of different ODE schemes. The dimensions 10, 30, and 50 were
considered and results indicated that based on the number of winners,
QODE outperforms other algorithms for D=30 and ODE outperforms
other algorithms for D=50. Kalra et al. [114] proposed using ANN to
compute Type-II OBL. An ANN is employed to discover relation
between the candidate solution x and its type-II opposite X; as input
and output of the network. The network is trained on training data,
then it can be used to predict type-II opposite. Mahdavi et al. [155]
introduced a CC framework with the population initialization strategies
based on the center-based sampling. Center-based normal distribution
sampling, central golden region, and hybrid random-center normal
distribution sampling strategies are utilized for the population initi-
alization. In center-based normal distribution sampling strategy, a
normal distribution with the mean value of the center point is used to
generate initial candidate solutions. Central golden region sampling
generates initialize candidate solutions close to the center point by
limiting the search space to the middle 60% interval of the search
space. In hybrid random-center normal distribution sampling, the 50%
of initial population is generated with the normal distribution sampling
strategy and another half is randomly sampled by using the uniform
distribution. In [338], a GA algorithm with the variable neighborhood
search was proposed to solve the two-stage assembly flowshop
scheduling problem. For four neighborhood structures; insert, swap,
exchange, and inverse; their opposites are generated by changing each
gene value (g;) for each candidate solution to 1 + n — g which n is the
number of jobs in a scheduling problem.

4.1.2. Swarm intelligence

In [38], an enhanced PSO was proposed which uses OBL for some
worst personal particles to replace with their opposites. OBL is applied
to create a personal best opposite in PSO and the best one from
personal best and its opposite is selected as personal best [95]. In
[118], the super-opposition concept was integrated into a PSO with an
adaptive velocity to enhance its exploration ability. A re-initialization
method according to the super-opposition concept is activated to avoid
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premature convergence when stagnation and premature convergence
states are identified. Each particle B () in a swarm with a super-
opposite point f’s( ) is generated randomly from a uniform distribution
on the following range:

[La(0), By) Pa(®) > (ug(t) + l,(0)/2
Y € Q1) a1\ (Pa(®)} Pa(t) = My(0)

B, ug (] Bq(t) <My(t), d=1,...,N

(67)

Where B, I, (), and u, () are the opposition of P,(r), the minimum and
maximum values of the d-th dimension in the swarm particles at
iteration t, respectively. In [180,182], the candidate solution with the
lowest fitness was replaced by its opposite in PSO algorithm. OBL is
combined with 1évy flight ABC in [249] which opposition of swarm is
computed after applying scout bee phase in the solution search process
based on a jumping rate. In [151], OBL was embedded to an
orthogonal learning PSO which computes the opposite position of the
worst particle in the swarm. The OBL concept was integrated into the
updated equation of particle in the PSO algorithm in [147]. The PSO
equations are modified as follow:

vt + 1) = w. v;(t) + . (Pbest;;(t) — x; (1)) + (68)
ry. (Gbest;(t) — x;;(t)) + r3. (Rworst;; (1) — x;(1)), (69)
x5 (t+ 1) = x;5() + vt + 1), (70)
rn+r+r=1, r, r, and rz are random number € [0, 1], (71)

where Rworst; is the worst Pbest solution of all Pbest(t) solutions at
iteration t. In [45], OBL was applied in PSO algorithm such that each
dimension of a candidate solution is disturbed by its opposite value
with a specific disturbance rate. Zhou et al. [382] proposed an
opposition-based learning competitive particle swarm optimizer which
uses OBL to avoid premature convergence in PSO. Three particles of
swarm are randomly selected and compared with each others which are
called the winner, neutral, and loser candidate solutions based on the
descent arrangement of their fitness. The winner particle is passed
without any change to the next iteration while the position and velocity
of the loser particle are updated by learning from winner, then it is
passed to the next iteration. The position and velocity of the loser
particle are modified by computing their opposite, then it is passed to
the next iteration. An initial population was generated for the ABC
algorithm by using OBL and chaotic systems in [86,84,85,65,363].
First, chaotic candidate solutions are generated by employing chaotic
systems and then their opposite are computed and the fittest indivi-
duals from the union of chaotic and opposite solutions are selected as
the initial population. In [386], the GOBL concept was employed in the
Scout Bee phase to generate new food sources. An ABC algorithm by
using center-based sampling strategy was proposed in [39]. The
centroid of population is defined as:

SN
C= Ei:l Xi

SN’ (72)

where SN is the number of the food sources and X; is the position of the
ith employed bee. Then, the centroid food source is applied in the
exploration step. In [370], OBL was applied to the worst firefly to find
better firefly.

A scouting predator-prey optimizer was proposed in [266] by using
various types of scout particles. A type of scout computes the opposi-
tion of the worst particle to discover a promising search region. A
modified ABC by using opposition-based learning was proposed in
[133] which it generates new candidate solutions for the employed and
onlooker bees by using OBL to select the fitter candidate solutions.
Using the OBL concept for ACO was investigated in [164,162]. They
introduced five different schemes to apply OBL to improve the
construction phase of ACO by utilizing synchronous opposition, free
opposition, free quasi-opposition, opposite pheromone per node, and
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opposite pheromone per edge. In [163], two extension steps were
proposed to use the opposition for ACO; the opposite pheromone per
node (OPN) and the opposite pheromone update (OPU). OPN was
proposed to escape from a local optimum which it changes the
pheromone of ants to move them to the opposite direction of their
current paths. In this method, the next city is picked up according to
the original pheromone content 7 or the opposite pheromone content #
with a random value. For an edge between the current node 7 to an
available node j, ¥ is computed as ¥ = 7., + Tux — 7. OPU computes
the opposite of the pheromone update phase in the ant algorithm. It
provides additional updates to modify the pheromone content faster
than the basic ACO. The opposite update is calculated based on a
random value. The opposite rating and the opposite pheromone
content for all edges are defined as follow:

oy =

ij = 4
HFomax — Pomin

(73)

where y; indicates the heuristic function value for the edge going from
the node i to the node j, and Mi”“ is the value for the edge outgoing from
the node 7 included present in the best path. The values p,,,, and p,,,
denote the maximum and minimum heuristic values of the graph.

m

new __ _current __ > k

=1 Z 0;At",
k=1

(74)

where """ is the current pheromone level on the edge going from the
node i to the node j, Az¥ is the additional pheromone by the ant k. In
[225,226], the full opposite combinatorial concept was introduced in
which the search process of an ACO algorithms is divided into two
steps; learning and solving by original ACO algorithm. In first step, an
ACO algorithm is applied to maximize the combinatorial objective
function while in the second step, the ACO algorithm deals with the
combinatorial objective function to be minimized. The main motivation
of the learning step is extracting knowledge in the opposite direction by
keeping the worse solutions to find some search region which is
transmitted into the second step for using in the ACO algorithm.
Also, in the first step, the heuristic knowledge of the worst candidate
solution is modified by computing its opposite which gives it more
priority during the optimization process. Also, the OBL concept has
been employed in the initialization step of several optimization
methods [87,113,113,332,167,130,349,191,316,314,379,189,3292,
250,290,350,146,181,317,111,110,185,81]. In addition, some optimi-
zation algorithms used the OBL concept only in updating steps of
candidate solutions [315,150,247,319,333,179,40,183,168,152,99,99,-
334,384,138,37]. Several algorithms have utilized the various concepts
of OBL by the proposed scheme in [210] in their initialization and
during updating steps [246,108,109,339,285,115,318,166,347,374,
324,65,70,71,180,378,321,153,273,133,34,145,343,82,160,353,325,
346,336,103,12,4341,369,200,304,335,16,317,112,53,219,354,323,
371,52,208,100,373,174,172].

4.1.2.1. Multi-objective  optimization. In  the  multi-objective
optimization methods, also the OBL concept was utilized to enhance
their performance. Some research works applied OBL in their
population initialization phase [198,291,193,10]. In [48,50], OBL is
incorporated into self-adaptive mechanisms for the probability of the
mutation and crossover in DE and also is hybridized with multi-
objective evolutionary gradient search to develop a local search. In
[51], a novel grid-based DE variant for many objective optimization
was proposed which utilizes the opposite of the mutation factor F to
increase the probability of finding a proper value for the mutation
factor. OBL was used in the population initialization and during the
evolution process of multi-objective DE to enhance its performance in
[63]. OBL was applied to the personal best positions in order to guide
the search process in the multi-objective PSO algorithm [94]. In [154],
the center-based opposite points and GOBL were applied in the initial
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population and during the evolution process of DE, respectively, to
enhance the performance of MOEA/D algorithm. Leung et al. [136]
proposed a new strategy based on OBL to find the proper parameter
values for the multi-objective DE algorithm (MODEA). In this method,
the opposition of those parameters are computed which they do not
have proper values to generate better candidate solutions.

A uniform weight vector generation method was proposed in [194]
for decomposition based multi-objective genetic algorithm (DMOGA)
which uses OBL to generate weight vectors. First, the range [0, 1] is
linearly divided into N values as weights for the first objective function;
then their opposite of these values are also calculated as weights for the
second objective function. Two opposition-based competitive coevolu-
tion multi-objective optimization algorithms [284] were proposed
based on two competitive fitness strategies, namely, the Hall of Fame
(HOF) and K-Random Opponents (KR). In these methods, the
competitive fitness strategies select individuals as the opponents which
simulate the OBL concept. An opposition-based competitive coevolu-
tion for a set of individuals (P, b,....1,), L, b,....1, € I) in the
population with size NP is described by defining the opposite set as
P, b,...,I,) with I =1 —1 which the operator “-~” denotes the
operation “remove from” operation. Then, the opposition-based com-
petitive coevolution selects the fittest from the individuals of two sets.
In the KR strategy [190], each individual competes with K other
individuals of opponents. In the HOF strategy [227], each individual is
competing against every archived best individual from previous gen-
erations. The proposed opposition-based coevolutionary algorithms
uses SPEA2 as multi-objective optimization algorithm which is inte-
grated with HOF and KR strategies. In SPEA2-CE-HOF and SPEA2-
CE-KR methods, individuals are selected as the opponents by utilizing
HOF or KR strategies, respectively. In [283], OBL is used to improve
both convergence rate and distribution of Pareto Front (PF) solutions
in evolutionary multi-objective optimization algorithms. During the
evolutionary process, the opposite points are generated which are
closer to true PF and also well-distributed; the opposite points try to fill
out the sparse region (i.e., higher crowding distance area) of the PF by
translating of the points to those regions. In fact, the opposition-based
jumping helps to have new individuals closer to first front and also
well-distributed. Assumption is that, the translating of bad individuals
in the decision variable space (Type-I opposition) is corresponding to
move toward the rank first PF curve in the objective space based on an
implicit Type-II opposition scheme.

4.2. Artificial neural networks (ANN)

In [308,312], Ventresca and Tizhoosh used the concept of opposite
transfer functions for back-propagation ANN through time algorithm
(BPTT) to enhance learning in the BPTT algorithm. Transfer functions
of network, the original transfer function or its opposite, are utilized is
based on a probabilistic estimation procedure. A probability for each
hidden neuron is computed according to the error function of the
network. If network obtains a lower error, the probability of the same
transfer functions in the network will be increased; otherwise, it will be
reduced. In [313], the concept of OTFs was utilized in the large-scale
neural networks including thousands of parameters. In learning step,
the transfer function of some neurons were changed to their opposite
transfer function according to a probabilistic rule in each iteration. The
network including the opposite transfer functions represents the
opposite network. Then, both current and opposite networks were
examined and the best one of them is selected as the current network.
The OBL concept was modified and applied to DE algorithm for
designing of a beta basis function neural network (BBF) [59]. The
opposition of the point X (x;, x,...,xp) is defined by:

v {ai((a,» + b,)/2 +x) x; < (a; + b,)/2

T\ (@i + b2 = x) x> (@ + b2 (75)

13

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

where o; is a random number in [0, 1]. Then, it is applied during
initialization step. Also, in mutation and crossover operators, it is also
utilized as follow:

V(@) = X1 (@) + F Qe 1) = X2(0)) + F(X3(0) — X04()), (76)
L. )V rand(0,1) < Cr
(i) = X(i) otherwise 77)

Where CR and F are the predefined crossover and mutation rates and
X,1(0), X0 (0), X,3(i), 11 (i), and v (i) are the opposition of x, (i), x,2 (i), x,3 (i),
u(i), and v (i); respectively. A hybrid improved opposition based PSO
was proposed in [361] to optimize the weights of ANN prediction
models. To improve the search ability, the opposite position and
velocity of each particle are calculated in the initial population and
during iteration of PSO and the best one is selected from the particle
and its opposite. For training a feedforward neural network (FNN), a
modified PSO was applied in [222], which uses opposition-based
initialization and opposition-based generation jumping concepts of
OBL. Also, in [60,61] the defined OBL concept in [59] was applied to a
PSO algorithm for the design of a beta basis function neural network
(BBF). OBL is applied in the initialization step for particles and then
the fittest particles are selected from particles and their opposites. In
the update position of particles, the opposition of particle j for each
particle p, with velocity v; is also defined as follow:

15,' = ﬁ,‘ + Vi, (78)

In [360], a hybrid PSO algorithm with applying OBL in the initializa-
tion step was proposed to train feedforward neural network. In [188],
GSA was combined with OBL for training feedforward networks with
the weight decay. In [312], opposite transfer functions were proposed
to improve the numerical conditioning of neural networks and also to
extrapolate two back-propagation-based learning algorithms.

4.3. Reinforcement learning (RL)

In [259], opposition-based Q(4) algorithm (0OQA) was proposed
based on the eligibility traces. They introduced the opposite traces as
the eligibility traces for opposite actions. In OQ4, it is assumed that the
agent receives the punishment 7, when takes opposite action ¢ in the
state s, therefore based on 7, the Q-matrix is updated for all states s and
opposite actions d as follow:

Q(s, a)«—Q(s, a) + ade(s, d), (79)
Sy—7 + yQ(s", a*¥) — Q(s, ), (80)
a**e—argmax, Q(s", b), (81)

where s” is the next state after taking the action g and e (s, @) is opposite
traces for states s and opposite actions &. Also, 4 is a discount factor. In
[260,261,258], the 0OQ4 algorithm was modified by using non-marko-
vian update of the opposite traces; called NOQA. An opposite weight W
is defined to update opposite traces and the updating formula in the Eq.
(80) is modified as follow:

Q(s, d)«—Q(s, d) + WX F X e(s, a) (82)

The new update formula does not depend on the next state. Tradeoff
between exploration and exploitation in the NOQA algorithm was
investigated in [262,261,258]. An increasing weight function was
proposed to improve the NOQA algorithm. By increasing learning
progresses, the opposite value of the weight (W) is gradually increased
in order to increase the positive effects of the opposite for the update of
Q-values (Q(s, @)). In [345], an active exploratory Q-Learning was
proposed which at a state, a number of actions are considered and then
the action with the greatest immediate reward is selected. The state of
the selected action is considered as the next state. The opposition-
based random search for the good action in the (OBR-SGA) method is
proposed which generates the pool of actions based on OBL. If the
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random action can not obtain a good reward so the opposite of this
action is examined. Also, they proposed opposition-based cyclic para-
meter adjustment-SGA (OBCPA-SGA) based on cyclic parameter
adjustment [128] and OBL. In OBCPA-SGA method, in the current
dimension, an action is changed to a pair of opposite action elements (a
and ) until the better reward cannot be reached. In [157], type-II
opposition was employed in Q-Learning to obtain the operating
policies in reservoir management. A trained function approximation
is computed and updated by using the obtained knowledge from the
main agent. A multi layer perceptron is used as the function approx-
imator. The opposite agent does not take an action but it extracts a set
of new action-value functions.

4.4. Fuzzy systems

In [301], a new method for image thresholding was proposed by
utilizing the opposite fuzzy set. First, a window is considered around
the center of an object and its size is iteratively increased. In each
iteration, the opposition of dark pixels as fuzzy set is computed for the
current window. The location of windows with the maximum difference
of entropy between the two fuzzy sets are calculated. Then, the image
threshold value is calculated based on the average of representative
numbers of both fuzzy sets of the selected window. In [300], a method
for the approximation of type II opposite was proposed via evolving
fuzzy inference systems. In this method, a Takagi-Sugeno, or T-S fuzzy
inference system [282] is used in which the fuzzy rules are described as
follow:

IF x is A; AND x is
THEN y=f/-(x1,x2,...

A, AND AND x, is

j=1,2,...D,

Ay

»XD),

(83)

where x;, y, and A; are the input and output variables, and extracted
fuzzy rules, respectively. To calculate Type-II opposite, a training data
is sampled in which the input variables are some solutions and their
corresponding objective function and the output variables are Type-II
opposites of solutions. After extracting fuzzy rules, the Type-II
opposites for new inputs can be approximated. Also, fuzzy rules can
be refined to better approximate Type-II opposition by using future
data points.

5. Contributions of OBL in application domains

In recent years, there has been a growing number of research works
which apply the OBL concept in the machine learning algorithms to
solve a variety of problems, such as power systems, pattern recognition
and image processing, identification, bioinformatics, medicine, etc.
OBL was applied in the optimization in power systems which have
several objectives with equality and inequality constraints such as
active power loss, fuel cost, etc. Also, it was used in optimization
methods for solving image processing and pattern recognition tasks
which require parameters tuning. In addition, OBL was utilized into
optimization methods to find the best parameter values for the
parameter identification of challenging nonlinear systems. The main
application of OBL is in the bioinformatics and medicine field including
disease diagnosis and prediction in molecules and proteins. Most
utilized schemes of OBL in various application domains are the basic
OBL concept and Quasi opposite. Table 2 summarizes the major
applications of OBL; about 168 papers.

6. Conclusion remarks and future directions

OBL can potentially be used with the soft computing techniques to
solve engineering and science problems. In this paper, a general
overview of research works on OBL has been surveyed. Beginning with
a comprehensive background of the basic OBL concept, it explained the
different schemes and mathematical theorems of OBL in the machine
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learning algorithms. Next, it provided an extensive review of the
modifications of using OBL in the reinforcement learning, artificial
neural networks, fuzzy systems, and variant optimization methods. It
gave a brief overview of most various applications of OBL. The content
of the paper indicates that taking advantage of the OBL concept has
various main aspects; (1) defining or selecting an appropriate scheme
of OBL corresponding to an especial problem, (2) recognizing how OBL
can be used and which part of algorithm, (3) verifying the efficiency of
using OBL by mathematical theorems or empirically validating by
developing comprehensive experiments. We define future trends of
OBL and describe some following research gaps which have been
identified.

e Solving high dimensional problems: Most of the current research
works on OBL have focused on enhancing the performance of
optimization methods in low dimensions. Much more effort is
required to employ the advantage of OBL to further improve the
scalability of the optimization methods to solve efficiently high
dimensional problems.

e The untouched perspectives in the optimization methods: Although
a number of research works have been proposed to use OBL in the
optimization methods, the different perspectives of optimization
methods are still greatly needed to be considered the advantage of
employing OBL. The most of major directions are different type of
variables such as integer, discrete, and mixed-type; other kinds of
optimization problems, such as noisy, dynamic, combinatorial,
multi-level, constraint optimization methods; strategies of the
increase diversity, local searches, developing escaping methods from
stagnation and local optimum; tuning methods of the control
parameters; and landscape analysis.

e Self-adaptive and adaptive opposition-based methods: The most of
OBL methods employ OBL with a jumping rate. A great potential to
future research work can be developing adaptive and self-adaptive
opposition-based algorithms which are able to control utilizing of
opposition during searching, learning, or optimization correspond-
ing to the type of problem.

e The uncovered fields in the machine learning: Using OBL is an
effective method to enhance variant branches in the machine learning.
It would be interesting to apply OBL to other fields of the machine
learning methods such as big data analytics, clustering, classification,
deep learning, sampling method, or metamodeling methods.

e A comprehensive comparison of variant opposition-based schemes
and their corresponding algorithms: An extensive comparative study
becomes an essential requirement to understand real capabilities
provided by variant opposition-based schemes and corresponding
algorithms and benefits, weaknesses, and limitations.

e Utilizing OBL schemes to accelerate mathematical or classical
optimization methods: Most of meta-heuristic algorithms have been
proposed based on using OBL. Further research can be directed to
apply OBL to accelerate the performance mathematical or classical
optimization methods (derivative or direct search based techniques).

e Utilizing OBL schemes in the positive and negative ways: Future
research works can lead to investigate both positive and negative
ways of using OBL schemes. With using OBL, algorithm can be able
to identify which way enhances the performance of algorithm (for
instance increasing diversity or decreasing diversity and selected
(good ones) or removing some candidate solution (bad ones)).

e Utilizing OBL in the interactive optimization methods to reduce the
number of user assessments: In the interactive optimization meth-
ods, user interacts significantly during the candidate solutions
evaluation process. A great to future research works can be
investigating of using OBL for the interactive optimization methods,
for example using the intermediate optimization results and their
opposites to get better feedback from user.

® The design of new opposition-based schemes of mutation, crossover,
and selection operations: The most developed opposition-based
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Table 2
Summary of applications of OBL.

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

Sub Areas and Details

Algorithms and references

Power Systems
Reactive power dispatch

Economic dispatch

Electrical power distribution system

Optimal power flow

Optimal design of power system stabilizer

Intelligent controller for load-tracking performance of an
autonomous power system

Protection relays in a power system

Isolated wind-diesel hybrid power system model

Solution of unit commitment problem

Short-term hydrothermal scheduling problems

Hydrothermal power system

Hybrid power system

Automatic generating control

Load frequency control of multi-source multi-area power system
Coordination of directional overcurrent relays

Pattern Recognition and Image Processing

Clustering

Feature selection

Face recognition

Image Processing

Identification problem
Parameters identification of solar cell models

Nonlinear system identification

Parameter identification of hyperchaotic systems
Identification of coupled pitch and heave motions
Parameter identification problems on graphics hardware
Traffic congestion identification

Identification of fuzzy inference systems

Parameter identification of uncertain fractional-order chaotic systems

Bioinformatics and Medicine

Sorting unsigned genomes

Breast cancer diagnosis

Diagnosis of cardiac disease

Diagnosis in mammography images

Molecular docking

Protein structure prediction

Medical image contrast enhancement

Recognition of maize Leaf diseases

Reconstruct organ boundaries in the human thorax using electrical
impedance tomography

Classification of benign and malignant masses based on Zernike
moments

Optimization of feeding profile for an industrial scale baker's yeast
fermentation process

Aerobic fermentation process

Miscellaneous

Network count location problem

Infinite impulse response (IIR) system

Flow shop scheduling problem

Quasi-oppositional DE [21], quasi-oppositional teaching learning based optimization [165], opposition-
based GSO [253], opposition-based self-adaptive modified GSO [178], quasi-oppositional BBO [231],
opposition-based GSO algorithm [252], opposition-based improved PSO [33], improved opposition-
based HS [135], quasi-oppositional harmony search algorithm [257]

Oppositional krill herd algorithm [23], multi-objective quasi-oppositional teaching learning [230],
opposition-based GSO algorithm [251], opposition-based HS [35], opposition-based GSA [20],
oppositional real coded chemical reaction optimization [26], DE with OBL, initial population [279],
oppositional BBO [29,28], quasi-oppositional GSA [32], OBL improved DE [280], opposition-based GSA
[187], opposition based DE [223], hybrid fuzzy-opposition based DE [294], opposition based DE [295],
oppositional teaching learning based optimization approach [233]

Oppositional krill herd algorithm [278], opposition based DE [176], multi-objective quasi-oppositional
teaching learning based optimization [277], quantum mechanics DE [46], hybrid Fuzzy-opposition
based DE [175], ODE [131], ODE [177]

Oppositional krill herd algorithm [170], a modified flower pollination [73], oppositional BBO [233], non
dominated sorting multi objective opposition based GSO [30], opposition-based DE [42], quasi-
oppositional BBO [229]

Oppositional GSO [195]

Opposition based GSA [17]

Opposition based chaotic DE [11]

A novel opposition-based GSO [17]

Quasi-oppositional teaching learning based algorithm [234]

Oppositional real coded chemical reaction based optimization [26]

Quasi-oppositional GSA [22]

Quasi-oppositional HS [289,288], quasi oppositional HS [158], quasi oppositional HS [159]
Quasi-oppositional HS [255], quasi-oppositional HS [254], quasi oppositional HS [256], oppositional
BBO [228]

Quasi oppositional HS algorithm [248]

Opposition based chaotic DE [36]

Improved cat swarm optimization algorithm based on OBL [132]

Opposition chaotic fitness mutation based adaptive inertia weight binary PSO [25]

Opposition PSO with support vector machine [101]

Opposition-Based RL [239], opposition-based RL [238], opposition-based RL [125], Micro opposition-
based DE [207], thresholding algorithm by utilizing the concept of opposite fuzzy sets [8], GA by using
OBL and self organizing map based fuzzy hybrid intelligent method [126], OBL-based cooperative PSO
[380], modified ABC [24]

Improved free search DE by using OBI for the worst solution [13], generalized oppositional teaching
learning based optimization [275]

Opposition based DE for training neural networks [275], ODE combined with Levenberg Marquardt
[276]

Oppositional backtracking search optimization [143]

Opposition-based PSO [56]

PSO by using GOBL concept [337]

Opposition-based RL based on fuzzy C-means clustering [367]

Multiobjective opposition-based space search algorithm [106]

A hybrid ABC by using chaotic opposition searching method [104]

Memetic and opposition-based learning GA [55]

Opposite weight back propagation NN classifiers [241]

The neuro fuzzy ECG classification network by using oppositional BBO [186]
Opposition-based classifier [240]

Opposition-based DE [129]

Improved PSO with OBL [381]

Opposition-based firefly algorithm [68]

An improved PSO algorithm for neural networks [287]

An oppositional BBO [221]

Generic back propagation learning rule [281]
Adaptive opposition based on differential evolution [372]
Optimization methodology based on neural networks and self-adaptive DE [69]

Opposition based colonial competitive algorithm (OCCA) [14,15],

Opposition based HS [306], opposition-based BAT algorithm (OBA) [237], opposition aided cat swarm

optimization [62], hybrid DE [269], teaching-learning opposition based optimization [271], opposition

based DE [265], hybrid DE by initializing OBL [268], opposition-based DE and binary successive

approximation-based evolutionary search algorithm [264], enhanced teaching learning-based

optimization [270]

An improved shuffled complex evolution algorithm with OBL [376], a new Cuckoo search algorithm

with hybrid strategies [326], a hybrid discrete biogeography-based optimization (HDBBO) with using
(continued on next page)
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Table 2 (continued)

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

Sub Areas and Details

Algorithms and references

Text summarization

Operation cost minimization of a Micro-Grid

Non-metric lens distortion correction

Electromagnetic parameters of the permanent magnet synchronous
machine system

Identification of critical to quality characteristics for complex
products

Forecasting agriculture water consumption

Transistors of the differential amplifier circuit

Knapsack problems

Service composition optimization

Optimized operation of microgrid

Resource constrained project scheduling problems

Optimal classification of epileptic signals

Optimal design of circular and concentric circular arrays with
improved far-field radiation characteristics

Multi-UCAVs targets assignment

Multi-objective optimization of retaining walls

Design and economic investigation of shell and tube heat exchangers

Optimal design of a PID controller

Time environment impact trade-off problem in construction projects

Optimal short-term hydro-thermal scheduling

Circle detection

Mobile robot controllers

Engineering optimization problems

Billboard advertising modeling

Voltage rise mitigation

Gun control system

Water resources problems

Visualization of hidden structures in corporate failure prediction

FM matching synthesis

Design strategy of low-pass FIR filter

Path planning for unmanned air vehicles

Epileptic EEG signal Classification

Rolling schedules for tandem hot rolling

An optimal design of coordinated proportional-integral

Placement of radio frequency identification

Wireless sensor network optimization

Generation expansion planning problem

Wireless access networks

Wireless sensor network dynamic deployment

The design of digital differentiator

Speed regulation in a chopper fed direct current motor drive

Design and economic investigation of shell and tube heat exchangers

Tuning chess evaluation function parameters

Truss topology optimization

Management of water resources

Symbolic regression

The neural modeling of a depollution process of some gaseous
streams

Earth slope stability evaluation in geotechnical engineering)

The Location of median line in 3-D space

The spot color matching

Running gait for humanoid robot

Optimize ready-mixed concrete truck dispatch schedule

Investigation on the inversion of the atmospheric duct

TSP problems

Frequency modulation parameter optimization problems

The nuclear reactor core design

Short term hydrothermal scheduling problems

A decision-making process for multi-period portfolio problem

Optimum routing vehicular ad-hoc networks

Truss optimization

The short-term hydrothermal scheduling problem

OBL [142], opposition-based DE [140], hybrid DE with OBL and bottleneck heuristic algorithm [204],
opposition effective GSA based memetic [383], A new cuckoo search algorithm with hybrid strategies
with GOBL [326]

ODE [2]

Using quasi-oppositional swine influenza model [25]

The opposition learning-based PSO [41]

Improved comprehensive learning PSO with OBL [102]

Improved GSA by using OBL [320]

A novel BP-NN by using PSO with OBL for training [365]
Opposition based HS [161]

The binary version of firefly algorithm [27]

DE with OBL [224],

Improved GSA by using OBL [139]

DE with OBL [78]

A modified Hs based on OBL [88]

Opposition-based BAT algorithm [220] (both initialize and jr)

Opposition-based genetic algorithm [342]

A hybrid adaptive gravitational search algorithm [123]

Intelligent tuned HS [303]

Opposition-based discrete action RL automata algorithm [201]
Opposition-based multiple-objective DE [43]

Quasi-oppositional teaching learning based optimization [235]

An opposition-based chaotic GA/PSO hybrid algorithm [64]

Hardware opposition-based PSO [173]

An opposition-based HS [18]

Opposition based colonial competitive algorithm [15]

Enhanced opposition-based firefly algorithm [344]

Improved multiobjective DE [83]

A hybrid ACO and DE using OBL [9]

A modified ACO algorithm by using obl [19]

Opposition-based shuffled PSO with the passive congregation [171]
Opposition-based DE, [243]

An improved ABC [134],

A modified HS based on OBL [89]

Opposition learning multi-objective GA [141]

Modified teaching learning based optimization with OBL [293]
Opposition-based learning estimation of distribution algorithm with gaussian copulas [92]
Velocity-free multi-objective PSO with centroid by initializing swarm with OBL [93]
Opposition-based DE [117]

A new modified BBO algorithm with the partial opposition-based learning [98]
A modified ABC with OBL [6]

A hybrid optimization method with OBL [272]

Opposition based artificial bee colony [218]

ABC with OBL [303]

ODE [31]

Accelerated multi-objective particle swarm by using OBL in the initialize step [72]
Opposition-based RL [156]

Balanced cartesian genetic programming by using Quasi OBL [368]
Hybridization of the self-adaptive DE algorithm by initializing with OBL [54]

Opposition-based firefly algorithm [124]

Teaching learning opposition based optimization method [217]

A hybrid BBO and HS with OBL [144]

Opposition-based learning PSO [364]

Integrating chaotic initialized opposition multiple-objective DE [44]
ABC based on OBL [362]

Oppositional BBO [356,49]

Generalized opposition-based DE [237]

DE with initializing OBL [236]

Quasi-oppositional GSA [232]

Quasi-oppositional comprehensive learning PSO [348]

An opposition based ACO [119]

An enhanced differential evolution (DE) algorithm with the directional mutation rule based on OBL
[199]

Quasi-reflected ions motion optimization algorithm [57]

optimization methods utilize OBL schemes just in the population
level for initialization or evolutionary process with a jumping rate.
Although, little efforts have been made to extend the opposition-
based operations, much more effort is needed to design new

opposition-based operations.

e Opposition-based multi-objective optimization: While some re-
search works have been conducted to apply OBL scheme in the
multi-objective optimization, the theoretical studies are still quite
infant in this field. Therefore, it would be interesting to design the
opposition-based multi-objective optimization methods which uti-

16
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lize OBL scheme to improve distribution and accuracy of Pareto-
front solutions, for instance, using Type II opposition in the Pareto
frontier to obtain the better solutions and developing the opposi-
tion-based decision making (ODM) to select one solution from
Pareto-front set.

e Partial opposition-based schemes: Most of opposition schemes
computed the opposition for all variables in a candidate solution
while it is possible to have some variables of a candidate solution
which are closer to the optimal solution and applying opposition can
make them worse. Only a few works have been performed [192,105]
to develop partial opposition method. Therefore, a potential area is
investigating new schemes of the partial opposition methods.

e Type-II opposition schemes: Developing Type-II opposition scheme
is very challenging because it needs to utilize a reverse mapping, i.e.,
objective value to the decision vector which is a complex task
especially for high-dimensional search spaces

References

(1]
[2]

[3]
[4]
(5]
(6]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]

[24]

Point reflection, (https://en.wikipedia.org/wiki/point_reflection).

A. Abuobieda, N. Salim, Y.J. Kumar, A.H. Osman, Opposition differential
evolution based method for text summarization, in Intelligent Information and
Database Systems, Springer, 2013, pp. 487-496.

N. Agarwal, A.K. Dhami, J. Neogi, Synergization of different improvements in
differential evolution, Mech. Eng. 1 (2013) 2.

M.A. Ahandani, Opposition-based learning in the shuffled bidirectional differen-
tial evolution algorithm, Swarm Evolut. Comput. (2015).

M.A. Ahandani, H. Alavi-Rad, Opposition-based learning in the shuffled differ-
ential evolution algorithm, Soft Comput. 16 (8) (2012) 1303-1337.

AR. Ajayan, S. Balaji, A modified abc algorithm & its application to wireless
sensor network dynamic deployment, IOSR J. Electron. Commun. Eng. (IOSR-
JECE) (2013) 2278-2834 (e-ISSN).

F.S. Al-Qunaieer, H.R. Tizhoosh, and S. Rahnamayan, Opposition based compu-
tinga survey, in Neural Networks (IJCNN), The 2010 International Joint
Conference on, IEEE, 2010, pp. 1-7.

F.S. Al-Qunaieer, H. R. Tizhoosh, S. Rahnamayan, Oppositional fuzzy image
thresholding, in Fuzzy Systems (FUZZ), 2010 IEEE International Conference on,
IEEE, 2010, pp. 1-7.

M. Ali, M. Pant, A. Abraham, A hybrid ant colony differential evolution and its
application to water resources problems, NaBIC (2009) 1133-1138.

M. Ali, P. Siarry, M. Pant, An efficient differential evolution based algorithm for
solving multi-objective optimization problems, Eur. J. Oper. Res. 217 (2) (2012)
404-416.

S. Allamsetty, R. Thangaraj, T.R. Chelliah, M. Pant, Sensitivity analysis on inverse
characteristics of directional over current relays using differential evolution
algorithm. International Journal of System Assurance Engineering and
Management, pp. 1-10.

Y. Ao, Differential evolution using second mutation for high-dimensional real-
parameter optimization, in Measuring Technology and Mechatronics Automation
in Electrical Engineering, Springer, 2012, pp. 191-201.

H.V.H. Ayala, L. dos Santos Coelho, V.C. Mariani, A. Askarzadeh, An improved
free search differential evolution algorithm: A case study on parameters identi-
fication of one diode equivalent circuit of a solar cell module, Energy 93 (2015)
1515-1522.

H.R.L. Azad, An application of opposition based colonial competitive algorithm to
solve network count location problem, Int. J. Intell. Syst. Appl. 6 (1) (2013) 29.
H.R.L. Azad, N.S. Boushehri, Billboard advertising modeling by using network
count location problem, Int. J. Traffic Transp. Eng. 4 (2) (2014).

H.R.L. Azad, N.S. Boushehri, N. Mollaverdi, Investigating the application of
opposition concept to colonial competitive algorithm, Int. J. Bio-Inspired Comput.
4 (5) (2012) 319-329.

A. Banerjee, V. Mukherjee, S. Ghoshal, Intelligent fuzzy-based reactive power
compensation of an isolated hybrid power system, Int. J. Electr. Power Energy
Syst. 57 (2014) 164-177.

A. Banerjee, V. Mukherjee, S. Ghoshal, An opposition-based harmony search
algorithm for engineering optimization problems, Ain Shams Eng. J. 5 (1) (2014)
85-101.

S. Banerjee, H.R. Tizhoosh, Visualization of hidden structures in corporate failure
prediction using opposite pheromone per node model, in Evolutionary
Computation (CEC), 2010 IEEE Congress on, IEEE, 2010, pp. 1-5.

M. Basu, Combined heat and power economic dispatch using opposition-based
group search optimization, Int. J. Electr. Power Energy Syst. 73 (2015) 819-829.
M. Basu, Quasi-oppositional differential evolution for optimal reactive power
dispatch, Int. J. Electr. Power Energy Syst. 78 (2016) 29-40.

M. Basu, Quasi-oppositional group search optimization for hydrothermal power
system, Int. J. Electr. Power Energy Syst. 81 (2016) 324-335.

M. Basu, Quasi-oppositional group search optimization for multi-area dynamic
economic dispatch, Int. J. Electr. Power Energy Syst. 78 (2016) 356—367.

A.K. Bhandari, A. Kumar, G.K. Singh, Modified artificial bee colony based
computationally efficient multilevel thresholding for satellite image segmentation

17

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

using kapur's, otsu and tsallis functions, Expert Syst. Appl. 42 (3) (2015)
1573-1601.

K.K. Bharti, P.K. Singh, Opposition chaotic fitness mutation based adaptive inertia
weight bpso for feature selection in text clustering, Appl. Soft Comput. 43 (2016)
20-34.

K. Bhattacharjee, A. Bhattacharya, S.H. nee Dey, Oppositional real coded chemical
reaction optimization for different economic dispatch problems, Int. J. Electr.
Power Energy Syst. 55 (2014) 378-391.

K.K. Bhattacharjee, S. Sarmah, A binary firefly algorithm for knapsack problems,
in Industrial Engineering and Engineering Management (IEEM), 2015 IEEE
International Conference on, IEEE, 2015, pp. 73-77.

A. Bhattacharya, P. Chattopadhyay, Solution of economic power dispatch pro-
blems using oppositional biogeography-based optimization, Electr. Power
Compon. Syst. 38 (10) (2010) 1139-1160.

A. Bhattacharya, P.K. Chattopadhyay, Oppositional biogeography-based optimi-
zation for multi-objective economic emission load dispatch, in India Conference
(INDICON), 2010 Annual IEEE, IEEE, 2010, pp. 1-6.

A.R. Bhowmik, A.K. Chakraborty, Solution of optimal power flow using non
dominated sorting multi objective opposition based gravitational search algo-
rithm, Int. J. Electr. Power Energy Syst. 64 (2015) 1237-1250.

B. Boskovi¢, J. Brest, Tuning chess evaluation function parameters using
differential evolution algorithm, Informatica 35 (2) (2011).

S.M.A. Bulbul, P.K. Roy, Quasi-oppositional gravitational search algorithm
applied to complex economic load dispatch problem, in Non Conventional Energy
(ICONCE), 2014 Proceedings of the 1st International Conference on, IEEE, 2014,
pp. 308-313.

S. Cao, X. Ding, Q. Wang, B. Chen, Opposition-based improved pso for optimal
reactive power dispatch and voltage control. Mathematical Problems in
Engineering, 2015, 2015.

Y. Cao, X. Li, J. Wang, Opposition-based animal migration optimization.
Mathematical Problems in Engineering, 2013, 2013.

A. Chatterjee, S. Ghoshal, V. Mukherjee, Solution of combined economic and
emission dispatch problems of power systems by an opposition-based harmony
search algorithm, Int. J. Electr. Power Energy Syst. 39 (1) (2012) 9-20.

T.R. Chelliah, R. Thangaraj, S. Allamsetty, M. Pant, Coordination of directional
overcurrent relays using opposition based chaotic differential evolution algorithm,
Int. J. Electr. Power Energy Syst. 55 (2014) 341-350.

C.-H. Chen, Opposition-based bare bone particle swarm optimization,

in Proceedings of the 2nd International Conference on Intelligent Technologies
and Engineering Systems (ICITES2013), pp. 1125-1132. Springer, 2014.

C.-H. Chen, C.-M. Lin, Enhance performance of particle swarm optimization by
altering the worst personal best particle, in Technologies and Applications of
Artificial Intelligence (TAAI), 2012 Conference on, IEEE, 2012, pp. 56-61.

K. Chen, C. Wang, Artificial bee colony algorithm improved by centroid strategy.
R. Chen, J. Tang, A novel particle swarm optimisation with hybrid strategies, Int.
J. Comput. Sci. Math. 6 (3) (2015) 278-286.

T. Chen, Y. Wang, D. Wu, X. Wu, Z. Ma, Non-metric lens distortion correction
using modified particle swarm optimisation, Int. J. Model., Identif. Control 21 (3)
(2014) 330-337.

Y. Chen, C. Chung, Multi-constrained optimal power flow by an opposition-based
differential evolution, in Power and Energy Society General Meeting, 2012 IEEE,
IEEE, 2012, pp. 1-7.

M.-Y. Cheng, D.-H. Tran, Opposition-based multiple-objective differential evolu-
tion to solve the time-cost-environment impact trade-off problem in construction
projects, J. Comput. Civil. Eng. 29 (5) (2014) 04014074.

M.-Y. Cheng, D.-H. Tran, Integrating chaotic initialized opposition multiple-
objective differential evolution and stochastic simulation to optimize ready-mixed
concrete truck dispatch schedule, J. Manag. Eng. 32 (1) (2015) 04015034.

Y. Chi, G. Cai, Particle swarm optimization with opposition-based disturbance, in
Informatics in Control, Automation and Robotics (CAR), 2010. Proceedings of the
2nd International Asia Conference on, volume 2, IEEE, 2010, pp. 223-226.
J.-P. Chiou, C.-F. Chang, A novel evolutionary algorithm for capacitor placement
in distribution systems, GSTF J. Eng. Technol. (JET) 2 (3) (2013) 9.

J.-P. Chiou, C.-F. Chang, J.-S. Jhang, Research for a new novel evolutionary
algorithm, in Computer, Consumer and Control (IS3C), 2014 International
Symposium on, IEEE, 2014, pp. 1115-1118.

J. Chong, A novel multi-objective memetic algorithm based on opposition-based
self-adaptive differential evolution, Memetic Comput. (2015) 1-19.

J.K. Chong, X. Qiu, An opposition-based self-adaptive differential evolution with
decomposition for solving the multiobjective multiple salesman problem, in
Evolutionary Computation (CEC), 2016 IEEE Congress on, IEEE, 2016, pp.
4096-4103.

J.K. Chong, K.C. Tan, An opposition-based self-adaptive hybridized differential
evolution algorithm for multi-objective optimization (osade).In Proceedings of the
18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1,
Springer, 2015, pp. 447-461.

J.K. Chong, K.C. Tan, A novel grid-based differential evolution (de) algorithm for
many-objective optimization, in Evolutionary Computation (CEC), 2016 IEEE
Congress on, IEEE, 2016, pp. 2776-2783.

L. Coelho, V.C. Mariani, H.V. Ayala, P. Alotto, Enhanced invasive weed optimi-
zation algorithm applied to electromagnetic optimization, in Proceedings of the
19th COMPUMAG Conference Comput. Electromagn. Fields, 2013, pp. 1-2.

E. Cuevas, D. Oliva, D. Zaldivar, M. Perez, G. Pajares, Opposition based
electromagnetismlike for global optimization. arXiv: arXiv:1405.51722014.

S. Curteanu, G.D. Suditu, A.M. Buburuzan, E.N. Dragoi, Neural networks and
differential evolution algorithm applied for modelling the depollution process of


https://en.wikipedia.org/wiki/point_reflection
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref1
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref1
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref2
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref2
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref3
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref3
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref4
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref4
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref4
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref5
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref5
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref6
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref6
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref6
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref7
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref7
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref7
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref7
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref8
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref8
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref9
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref9
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref10
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref10
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref10
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref11
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref11
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref11
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref12
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref12
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref12
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref13
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref13
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref14
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref14
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref15
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref15
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref16
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref16
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref17
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref17
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref17
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref17
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref18
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref18
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref18
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref19
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref19
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref19
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref20
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref20
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref20
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref21
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref21
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref21
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref22
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref22
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref23
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref23
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref23
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref24
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref24
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref24
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref25
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref25
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref26
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref26
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref26
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref27
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref27
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref27
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref28
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref28
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref28
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref29
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref29
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref30
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref30
http://arXiv:1405.5172
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref31
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref31

S. Mahdavi et al.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]
[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

some gaseous streams, Environ. Sci. Pollut. Res. 21 (22) (2014) 12856-12867.
L.A. da Silveira, J. L. Soncco-Alvarez, T.A. de Lima, M. Ayala-Rincén, Memetic
and opposition-based learning genetic algorithms for sorting unsigned genomes
by translocations, in Advances in Nature and Biologically Inspired Computing,
Springer, 2016, pp. 73-85.

Y. Dai, L. Liu, S. Feng, On the identification of coupled pitch and heave motions
using opposition-based particle swarm optimization. Mathematical Problems in
Engineering, 2014.

S. Das, A. Bhattacharya, A.K. Chakraborty, Quasi-reflected ions motion optimi-
zation algorithm for short-term hydrothermal scheduling. Neural Computing and
Applications, pp. 1-27.

C. Deng, X. Dong, Y. Yang, Y. Tan, X. Tan, Differential evolution with novel local
search operation for large scale optimization problems, in Advances in Swarm and
Computational Intelligence, Springer, 2015, pp. 317-325.

H. Dhahri, A.M. Alimi, Opposition-based differential evolution for beta basis
function neural network, in Evolutionary Computation (CEC), 2010 IEEE
Congress on, IEEE, 2010, pp. 1-8.

H. Dhahri, A.M. Alimi, Opposition-based particle swarm optimization for the
design of beta basis function neural network, in Neural Networks (IJCNN), The
2010 International Joint Conference on, IEEE, 2010, pp. 1-8.

H. Dhahri, A.M. Alimi, A. Abraham, Hierarchical particle swarm optimization for
the design of beta basis function neural network, in Intelligent Informatics,
Springer, 2013, pp. 193-205.

K.K. Dhaliwal, J.S. Dhillon, Opposition aided cat swarm optimization algorithm
for optimal digital iir high pass filter design.

N. Dong, Y. Wang, Multiobjective differential evolution based on opposite
operation, in Computational Intelligence and Security, 2009. CIS'09. International
Conference on, volume 1, IEEE, 2009, pp. 123-127.

N. Dong, C.-H. Wu, W.-H. Ip, Z.-Q. Chen, C.-Y. Chan, K.-L. Yung, An opposition-
based chaotic ga/pso hybrid algorithm and its application in circle detection,
Comput. Math. Appl. 64 (6) (2012) 1886-1902.

W. Dong, L. Kang, W. Zhang, Opposition-based particle swarm optimization with
adaptive mutation strategy, Soft Comput. (2016) 1-10.

M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in
Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on,
volume 2, IEEE, 1999, pp. 1470-1477.

M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of
cooperating agents, IEEE Trans. Syst., Man, Cybern., Part B: Cybern. 26 (1)
(1996) 29-41.

A. Draa, Z. Benayad, F.Z. Djenna, An opposition-based firefly algorithm for
medical image contrast enhancement, Int. J. Inf. Commun. Technol. 7 (4-5)
(2015) 385-405.

E.-N. Dragoi, S. Curteanu, A.-I. Galaction, D. Cascaval, Optimization methodology
based on neural networks and self-adaptive differential evolution algorithm
applied to an aerobic fermentation process, Appl. Soft Comput. 13 (1) (2013)
222-238.

M. El-Abd, Opposition-based artificial bee colony algorithm, in Proceedings of the
13th annual conference on Genetic and evolutionary computation, ACM, 2011,
pp. 109-116.

M. El-Abd, Generalized opposition-based artificial bee colony algorithm, in
Evolutionary Computation (CEC), 2012 IEEE Congress on, IEEE, 2012, pp. 1-4.
R. Ellaia, A. Habbal, E. Pagnacco, A new accelerated multi-objective particle
swarm algorithm. applications to truss topology optimization, in 10th World
Congress on Structural and Multidisciplinary Optimization, 2013.

B.E. Emilio, E. Cuevas, et al. Optimal power flow solution using modified flower
pollination algorithm, in 2015 IEEE International Autumn Meeting on Power,
Electronics and Computing (ROPEC), IEEE, 2015, pp. 1-6.

M. Ergezer, D. Simon, Oppositional biogeography-based optimization for combi-
natorial problems, in Evolutionary Computation (CEC), 2011 IEEE Congress on,
IEEE, 2011, pp. 1496-1503.

M. Ergezer, D. Simon, Mathematical and experimental analyses of oppositional
algorithms, IEEE Trans. Cybern. 44 (11) (2014) 2178-2189.

M. Ergezer, D. Simon, Probabilistic properties of fitness-based quasi-reflection in
evolutionary algorithms, Comput. Oper. Res. 63 (2015) 114-124.

M. Ergezer, D. Simon, D. Du, Oppositional biogeography-based optimization,
SMC 9 (2009) 1009-1014.

A. Eshraghi, A new approach for solving resource constrained project scheduling
problems using differential evolution algorithm, Int. J. Ind. Eng. Comput. 7 (2)
(2016) 205-216.

A. Esmailzadeh, S. Rahnamayan, Enhanced differential evolution using center-
based sampling, in Evolutionary Computation (CEC), 2011 IEEE Congress on,
IEEE, 2011, pp. 2641-2648.

A. Esmailzadeh, S. Rahnamayan, Center-point-based simulated annealing, in
Electrical & Computer Engineering (CCECE), 2012. Proceedings of the 25th IEEE
Canadian Conference on, IEEE, 2012, pp. 1-4.

X. Fu, W. Liu, B. Zhang, H. Deng, Quantum behaved particle swarm optimization
with neighborhood search for numerical optimization. Mathematical Problems in
Engineering, 2013, 2013.

H. Gao, C. Li, Opposition-based quantum firework algorithm for continuous
optimisation problems, Int. J. Comput. Sci. Math. 6 (3) (2015) 256—-265.

Q. Gao, J. Chen, L. Wang, S. Xu, Y. Hou, Multiobjective optimization design of a
fractional order pid controller for a gun control system. The Scientific World
Journal, 2013, 2013.

W. Gao, S. Liu, Improved artificial bee colony algorithm for global optimization,
Inf. Process. Lett. 111 (17) (2011) 871-882.

W. Gao, S. Liu, L. Huang, A global best artificial bee colony algorithm for global

18

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

optimization, J. Comput. Appl. Math. 236 (11) (2012) 2741-2753.

W.-f. Gao, S.-y. Liu, A modified artificial bee colony algorithm, Comput. Oper. Res.
39 (3) (2012) 687-697.

W.-f. Gao, S.-y. Liu, L.-l. Huang, Particle swarm optimization with chaotic
opposition-based population initialization and stochastic search technique,
Commun. Nonlinear Sci. Numer. Simul. 17 (11) (2012) 4316-4327.

X.-Z. Gao, J. Wang, J. Tanskanen, R. Bie, X. Wang, P. Guo, K. Zenger, Optimal
classification of epileptic eeg signals using neural networks and harmony search
methods, J. Softw. 9 (1) (2014) 230-239.

X.Z. Gao, J. Wang, J.M. Tanskanen, R. Bie, P. Guo, Bp neural networks with
harmony search method-based training for epileptic eeg signal classification, in
Computational Intelligence and Security (CIS), 2012 Proceedings of the Eighth
International Conference on, IEEE, 2012, pp. 252—-257.

X.Z. Gao, X. Wang, S.J. Ovaska, A hybrid harmony search method based on obl, in
Computational Science and Engineering (CSE), 2010 IEEE 13th International
Conference on, IEEE, 2010, pp. 140-145.

X.Z. Gao, X. Wang, K. Zenger, X. Wang, A novel harmony search method with
dual memory, in Systems, Man, and Cybernetics (SMC), 2012 IEEE International
Conference on, IEEE, 2012, pp. 177-183.

Y. Gao, X. Hu, H. Liu, F. Li, L. Peng, Opposition-based learning estimation of
distribution algorithm with gaussian copulas and its application to placement of
rfid readers, in Artificial Intelligence and Computational Intelligence, Springer,
2011, pp. 219-227.

Y. Gao, L. Peng, F. Li, X. Hu, Velocity-free multi-objective particle swarm
optimizer with centroid for wireless sensor network optimization, Artif. Intell.
Comput. Intell. (2012) 682-689.

Y. Gao, L. Peng, F. Li, M. Liu, W. Li, Multi-objective opposition-based learning
fully informed particle swarm optimizer with favour ranking, in Granular
Computing (GrC), 2013 IEEE International Conference on, IEEE, 2013, pp. 114—
119.

Y. Gao, L. Peng, F. Li, M. Liu, W. Liu, Opposition-based learning fully informed
particle swarm optimizer without velocity, in Advances in Swarm Intelligence,
Springer, 2013, pp. 79-86.

Z.W. Geem, J.H. Kim, G. Loganathan, A new heuristic optimization algorithm:
harmony search, Simulation 76 (2) (2001) 60-68.

D.E. Goldberg, J.H. Holland, Genetic algorithms and machine learning, Mach.
Learn. 3 (2) (1988) 95-99.

S.K. Goudos, M. Deruyck, D. Plets, L. Martens, W. Joseph, Application of
opposition-based learning concepts in reducing the power consumption in
wireless access networks, in 2016 Proceedings of the 23rd International
Conference on Telecommunications (ICT), IEEE, 2016, pp. 1-5.

Z. Guo, H. Huang, H. Yang, S. Wang, H. Wang, An enhanced gravitational search
algorithm for global optimisation, Int. J. Wirel. Mob. Comput. 9 (3) (2015)
273-280.

L. Han, X. He, A novel opposition-based particle swarm optimization for noisy
problems, in Natural Computation, 2007. ICNC 2007. Proceedings of the Third
International Conference on, volume 3, pp. 624-629. IEEE, 2007.

M. Hasan, S.N.H.S. Abdullah, Z.A. Othman, Face recognition based on opposition
particle swarm optimization and support vector machine, in Signal and Image
Processing Applications (ICSIPA), 2013 IEEE International Conference on, pp.
417-424. IEEE, 2013.

J. He, Z. Liu, Estimation of stator resistance and rotor flux linkage in spmsm using
clpso with opposition-based learning strategy.

J. HU, Y. LOU, Y. CUI, Opposition-based differential evolution with ordering
strategy on elite individuals?, J. Comput. Inf. Syst. 9 (23) (2013) 9421-9428.
W. Hu, Y. Yu, S. Zhang, A hybrid artificial bee colony algorithm for parameter
identification of uncertain fractional-order chaotic systems, Nonlinear Dyn. 82 (3)
(2015) 1441-1456.

Z. Hu, Y. Bao, T. Xiong, Partial opposition-based adaptive differential evolution
algorithms: evaluation on the cec 2014 benchmark set for real-parameter
optimization, in Evolutionary Computation (CEC), 2014 IEEE Congress on, IEEE,
2014, pp. 2259-2265.

W. Huang, S.-K. Oh, Identification of fuzzy inference systems by means of a
multiobjective opposition-based space search algorithm. Mathematical Problems
in Engineering, 2013, 2013.

G. Iacca, F. Neri, E. Mininno, Opposition-based learning in compact differential
evolution, in Applications of Evolutionary Computation, Springer, 2011, pp. 264—
273.

M. Imran, R. Hashim, N.E.A. Khalid, Opposition based particle swarm optimi-
zation with student t mutation (ostpso), in Data Mining and Optimization (DMO),
2012. Proceedings of the 4th Conference on, IEEE, 2012, pp. 80-85.

M. Imran, H. Jabeen, M. Ahmad, Q. Abbas, W. Bangyal, Opposition based pso and
mutation operators, in Education Technology and Computer (ICETC), 2010.
Proceedings of the 2nd International Conference on, volume 4, IEEE, 2010, pages
V4-506.

M.A. Igbal, N.K. Khan, S. Akram, A.R. Baig, Hybrid mutation based evolutionary
approach for function optimization, in Computer Sciences and Convergence
Information Technology (ICCIT), 2011 Proceedings of the 6th International
Conference on, IEEE, 2011, pages 803-808.

M.A. Igbal, N.K. Khan, M.A. Jaffar, M. Ramzan, A.R. Baig, Opposition based
genetic algorithm with cauchy mutation for function optimization, in Information
Science and Applications (ICISA), 2010 International Conference on, IEEE, 2010,
pp. 1-7.

M.A. Igbal, N.K. Khan, H. Mujtaba, A.R. Baig, A novel function optimization
approach using opposition based genetic algorithm with gene excitation, Int J.
Innov. Comput. Inf. Control 7 (2011) 4263-4276.


http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref31
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref32
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref32
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref32
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref33
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref33
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref34
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref34
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref34
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref35
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref35
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref35
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref36
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref36
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref36
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref36
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref37
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref37
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref38
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref38
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref39
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref39
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref40
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref40
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref40
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref41
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref41
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref42
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref42
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref43
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref43
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref44
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref44
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref45
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref45
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref45
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref46
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref46
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref46
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref47
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref47
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref47
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref48
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref48
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref49
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref49
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref50
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref50
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref50
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref51
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref51
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref52
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref52
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref52
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref53
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref53
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref53

S. Mahdavi et al.

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

H. Jabeen, Z. Jalil, A.R. Baig, Opposition based initialization in particle swarm
optimization (0-pso).In Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference: Late Breaking Papers,
ACM, 2009, pp. 2047-2052.

S. Kalra, A. Sriram, S. Rahnamayan, H. Tizhoosh, Learning opposites using neural
networks, in Proceedings of the 23rd International Conference on Pattern
Recognition (ICPR 2016), 2016.

L. Kang, W. Dong, K. Li, Adaptive mutation opposition-based particle swarm
optimization, in Computational Intelligence and Intelligent Systems, Springer,
2015, pp. 116-128.

D. Karaboga, An idea based on honey bee swarm for numerical optimization.
Technical report, Technical report-tr06, Erciyes university, engineering faculty,
computer engineering department, 2005.

K. Karthikeyan, S. Kannan, S. Baskar, C. Thangaraj, Application of opposition-
based differential evolution algorithm to generation expansion planning problem,
J. Electr. Eng. Technol. (JEET) 8 (4) (2013) 686—693.

M. Kaucic, A multi-start opposition-based particle swarm optimization algorithm
with adaptive velocity for bound constrained global optimization, J. Glob. Optim.
55 (1) (2013) 165-188.

B. Kazemi, M. Ahmadi, S. Talebi, Optimum and reliable routing in vanets: An
opposition based ant colony algorithm scheme, in Connected Vehicles and Expo
(ICCVE), 2013 International Conference on, IEEE, 2013, pp. 926—930.

B. Kazimipour, M.N. Omidvar, X. Li, A. Qin, A novel hybridization of opposition-
based learning and cooperative co-evolutionary for large-scale optimization, in
Evolutionary Computation (CEC), 2014 IEEE Congress on, IEEE, 2014, pp.
2833-2840.

J. Kennedy, R. Eberhart, Particle swarm optimization, in Neural Networks, 1995.
Proceedings., IEEE International Conference on, volume 4, IEEE, 1995, pp.
1942-1948.

J. Kennedy, J.F. Kennedy, R.C. Eberhart, Y. Shi, Swarm intelligence, Morgan
Kaufmann, 2001.

M. Khajehzadeh, M.R. Taha, M. Eslami, Multi-objective optimisation of retaining
walls using hybrid adaptive gravitational search algorithm, Civil. Eng. Environ.
Syst. 31 (3) (2014) 229-242.

M. Khajehzadeh, M.R. Taha, M. Eslami, Opposition-based firefly algorithm for
earth slope stability evaluation, China Ocean Eng. 28 (5) (2014) 713-724.

F. Khalvati, H.R. Tizhoosh, M.D. Aagaard, Opposition-based window memoiza-
tion for morphological algorithms, in Computational Intelligence in Image and
Signal Processing, 2007. CIISP 2007. IEEE Symposium on, IEEE, 2007, pp. 425—
430.

A. Khan, M.A. Jaffar, Genetic algorithm and self organizing map based fuzzy
hybrid intelligent method for color image segmentation, Appl. Soft Comput. 32
(2015) 300-310.

R.A. Khanum, M.A. Jan, Centroid-based initialized jade for global optimization, in
Computer Science and Electronic Engineering Conference (CEEC), 2011 3rd,
IEEE, 2011, pp. 115-120.

J. Kofman, G.K. Knopf, Continuous unconstrained range sensing of free-form
surfaces without sensor-head pose measurement, Opt. Eng. 42 (5) (2003)
1496-1510.

M. Koohi-Moghadam, A.T. Rahmani, Molecular docking with opposition-based
differential evolution, in Proceedings of the 27th Annual ACM Symposium on
Applied Computing, ACM, 2012, pp. 1387-1392.

F. Kuang, Z. Jin, W. Xu, S. Zhang, A novel chaotic artificial bee colony algorithm
based on tent map, in Evolutionary Computation (CEC), 2014 IEEE Congress on,
IEEE, 2014, pp. 235-241.

R.M. Kumar, K. Thanushkodi, Reconfiguration and capacitor placement using
opposition based differential evolution algorithm in power distribution system,
Int. Rev. Model. Simul. (IREMOS) 6 (4) (2013) 1233-1239.

Y. Kumar, G. Sahoo, An improved cat swarm optimization algorithm based on
opposition-based learning and cauchy operator for clustering.

J.-i. Kushida, A. Hara, T. Takahama, An improvement of opposition-based
differential evolution with archive solutions, in Advanced Mechatronic Systems
(ICAMechS), 2014 International Conference on, IEEE, 2014, pp. 463—468.

L. Lei, Q. Shiru, Path planning for unmanned air vehicles using an improved
artificial bee colony algorithm, in Control Conference (CCC), 2012 31st Chinese,
IEEE, 2012, pp. 2486—-2491.

K. Lenin, B.R. Reddy, M. Suryakalavathi, Upgraded harmony search algorithm for
solving optimal reactive power dispatch problem, Int. J. Math. Res. 4 (1) (2015)
42.

S.W. Leung, X. Zhang, S.Y. Yuen, Multiobjective differential evolution algorithm
with opposition-based parameter control, in Evolutionary Computation (CEC),
2012 IEEE Congress on, IEEE, 2012, pp. 1-8.

Y.-W. Leung, Y. Wang, An orthogonal genetic algorithm with quantization for
global numerical optimization, IEEE Trans. Evolut. Comput. 5 (1) (2001) 41-53.
L. Li, X.F. Mai, Bacterial foraging algorithm based on quantum-behaved particle
swarm optimization for global optimization, in Advanced Materials Research,
volume 655, Trans Tech Publ, 2013, pp. 948-954.

P. Li, W. Xu, Z. Zhou, R. Li, Optimized operation of microgrid based on
gravitational search algorithm, in Electrical Machines and Systems (ICEMS), 2013
International Conference on, IEEE, 2013, pp. 338—342.

X. Li, M. Yin, An opposition-based differential evolution algorithm for permuta-
tion flow shop scheduling based on diversity measure, Adv. Eng. Softw. 55 (2013)
10-31.

Y. Li, X. Zhao, Y. Wang, M. Ren, Multi-objective optimization of rolling schedules
for tandem hot rolling based on opposition learning multi-objective genetic
algorithm, in Control and Decision Conference (CCDC), 2013 25th Chinese, IEEE,

19

[142]
[143]
[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

2013, pp. 846-849.

J. Lin, A hybrid discrete biogeography-based optimization for the permutation
flow shop scheduling problem, Int. J. Prod. Res. (2015) 1-10.

J. Lin, Oppositional backtracking search optimization algorithm for parameter
identification of hyperchaotic systems, Nonlinear Dyn. 80 (1-2) (2015) 209-219.
J. Lin, L. Xu, H. Zhang, Hybrid biogeography based optimization for constrained
optimal spot color matching, Color Res. Appl. 39 (6) (2014) 607-615.

AW. Ling, H. Shareef, A. Mohamed, A.A. Ibrahim, An enhanced opposition-based
firefly algorithm for solving complex optimization problems, J. Kejuruter. 26
(2014) 89-96.

H. Liu, G. Ding, H. Sun, An improved opposition-based disruption operator in
gravitational search algorithm, in Computational Intelligence and Design (ISCID),
2012 Proceedings of the Fifth International Symposium on, volume 2, IEEE,
2012, pp. 123-126.

H. LIU, G. DING, G. XU, Integrating opposition-based learning into the
evolutionary equation of particle swarm optimization?, J. Comput. Inf. Syst. 10 (2)
(2014) 539-546.

H. Liu, Z. Wu, H. Li, H. Wang, S. Rahnamayan, C. Deng, Rotation-based learning:
A novel extension of opposition-based learning, in PRICAI 2014: Trends in
Artificial Intelligence, Springer, 2014, pp. 511-522.

H. Liu, Z. Wu, H. Wang, S. Rahnamayan, C. Deng, Improved differential evolution
with adaptive opposition strategy, in Evolutionary Computation (CEC), 2014
IEEE Congress on, IEEE, 2014, pp. 1776-1783.

H. Liu, G. Xu, G. Ding, D. Li, Integrating opposition-based learning into the
evolution equation of bare-bones particle swarm optimization, Soft Comput. 19
(10) (2015) 2813—-2836.

R. Liu, L. Wang, W. Ma, C. Mu, L. Jiao, Quadratic interpolation based orthogonal
learning particle swarm optimization algorithm, Nat. Comput. 13 (1) (2014)
17-37.

Y. Lou, J. Li, Y. Shi, L. Jin, Gravitational co-evolution and opposition-based
optimization algorithm, Int. J. Comput. Intell. Syst. 6 (5) (2013) 849-861.

J. Luo, Q. Wang, A method for axis straightness error evaluation based on
improved artificial bee colony algorithm, Int. J. Adv. Manuf. Technol. 71 (5-8)
(2014) 1501-1509.

X. Ma, F. Liu, Y. Qi, M. Gong, M. Yin, L. Li, L. Jiao, J. Wu, Moea/d with
opposition-based learning for multiobjective optimization problem,
Neurocomputing 146 (2014) 48—-64.

S. Mahdavi, S. Rahnamayan, K. Deb, Center-based initialization of cooperative co-
evolutionary algorithm for large-scale optimization.

M. Mahootchi, H. Tizhoosh, K. Ponnambalam, Opposition-based reinforcement
learning in the management of water resources, in Approximate Dynamic
Programming and Reinforcement Learning, 2007. ADPRL 2007. IEEE
International Symposium on, IEEE, 2007, pp. 217-224.

M. Mahootchi, H.R. Tizhoosh, K. Ponnambalam, Opposition mining in reservoir
management, in Oppositional Concepts in Computational Intelligence, Springer,
2008, pp. 299-321.

T. Mahto, V. Mukherjee, Energy storage systems for mitigating the variability of
isolated hybrid power system, Renew. Sustain. Energy Rev. 51 (2015) 1564-1577.
T. Mahto, V. Mukherjee, Evolutionary optimization technique for comparative
analysis of different classical controllers for an isolated wind-diesel hybrid power
system, Swarm Evolut. Comput. (2015).

X. Mai, L. Ling, Pso based bacterial foraging algorithm with opposition-based
learning for global optimization, Trans. Control Mech. Syst. 1 (4) (2012).

K. Maji, H. Jaiswal, R. Kar, D. Mandal, S. Ghoshal, Opposition harmony search
algorithm based optimal sizing of cmos analog amplifier circuit, in Science and
Technology (TICST), 2015 International Conference on, IEEE, 2015, pp. 303—
307.

A.R. Malisia, Investigating the application of opposition-based ideas to ant
algorithms. 2007.

A.R. Malisia, Improving the exploration ability of ant-based algorithms, in
Oppositional Concepts in Computational Intelligence, Springer, 2008, pp. 121—
142.

A.R. Malisia, H.R. Tizhoosh, Applying opposition-based ideas to the ant colony
system, in Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, IEEE, 2007, pp.
182-189.

B. Mandal, P.K. Roy, Optimal reactive power dispatch using quasi-oppositional
teaching learning based optimization, Int. J. Electr. Power Energy Syst. 53 (2013)
123-134.

B. Mandal, T. Si, Opposition based particle swarm optimization with exploration
and exploitation through gbest, in Advances in Computing, Communications and
Informatics (ICACCI), 2015 International Conference on, IEEE, 2015, pp. 245—
250.

W. Mao, H.-y. Lan, H.-r. Li, A new modified artificial bee colony algorithm with
exponential function adaptive steps, Comput. Intell. Neurosci. 501 (2015)
807630.

X. Miao, D. Mu, X. Han, D. Zhang, A hybrid differential evolution for numerical
optimization, in Biomedical Engineering and Informatics, 2009. BMEI'09.
Proceedings of the 2nd International Conference on, IEEE, 2009, pp. 1-5.
M.-E. Miranda-Varela, E. Mezura-Montes, Surrogate-assisted differential evolu-
tion with an adaptive evolution control based on feasibility to solve constrained
optimization problems, in Proceedings of the Fifth International Conference on
Soft Computing for Problem Solving, Springer, 2016, pp. 809-822.

A. Mukherjee, V. Mukherjee, Solution of optimal power flow with facts devices
using a novel oppositional krill herd algorithm, Int. J. Electr. Power Energy Syst.
78 (2016) 700-714.

D.M. Munoz, C.H. Llanos, L.D.S. Coelho, M. Ayala-Rincon, Opposition-based


http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref54
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref54
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref54
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref55
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref55
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref55
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref56
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref56
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref57
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref57
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref57
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref58
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref58
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref59
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref59
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref59
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref60
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref60
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref60
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref61
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref61
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref61
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref62
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref62
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref62
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref63
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref63
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref64
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref64
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref64
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref65
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref65
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref66
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref66
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref67
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref67
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref68
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref68
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref68
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref69
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref69
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref69
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref70
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref70
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref70
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref71
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref71
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref71
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref72
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref72
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref73
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref73
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref73
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref74
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref74
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref74
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref75
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref75
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref76
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref76
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref76
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref77
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref77
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref78
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref78
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref78
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref79
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref79
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref79
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref80
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref80
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref80

S. Mahdavi et al.

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]
[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

shuffled pso with passive congregation applied to fm matching synthesis, in
Evolutionary Computation (CEC), 2011 IEEE Congress on, IEEE, 2011, pages
2775—2781.

D.M. Muiioz, C.H. Llanos, L.D.S. Coelho, M. Ayala-Rincon, Accelerating the
artificial bee colony algorithm by hardware parallel implementations, in Circuits
and Systems (LASCAS), 2012 IEEE Proceedings of the Third Latin American
Symposium on, IEEE, 2012, pp. 1-4.

D.M. Muiioz, C.H. Llanos, L.d.S. Coelho, M. Ayala-Rincén, Hardware opposition-
based pso applied to mobile robot controllers, Eng. Appl. Artif. Intell. 28 (2014)
64-77.

D.M. Munoz, C.H. Llanos, L. dos Santos Coelho, M. Ayala-Rincon, Hardware-
based parallel firefly algorithm for embedded applications, in Adaptive Hardware
and Systems (AHS), 2013 NASA/ESA Conference on, IEEE, 2013, pp. 39-46.

R. MuthuKumar, K. Thanushkodi, Capacitor placement and reconfiguration of
distribution system with hybrid fuzzy-opposition based differential evolution
algorithm, IOSR J. Electr. Electron. Eng. (IOSR-JEEE) 6 (4) (2013) 64—69.

R. Muthukumar, K. Thanushkodi, Opposition based differential evolution algo-
rithm for capacitor placement on radial distribution system, J. Elect. Eng.
Technol. 9 (2014) 45-51.

R. Muthukumar, K. Thanushkodi, et al., Loss reduction in distribution system
with hybrid fuzzy-opposition based differential evolution algorithm, Aust. J.
Electr. Electron. Eng. 11 (2) (2014) 257.

T. Niknam, M. Narimani, R. Azizipanah-Abarghooee, B. Bahmani-Firouzi,
Multiobjective optimal reactive power dispatch and voltage control: a new
opposition-based self-adaptive modified gravitational search algorithm, IEEE
Syst. J. 7 (4) (2013) 742-753.

Z.Ning, L. Ma, Z. Li, W. Xing, A hybrid particle swarm optimization for numerical
optimization, in Business Intelligence and Financial Engineering, 2009. BIFE'09.
International Conference on, IEEE, 2009, pp. 92-96.

M.G. Omran, Using opposition-based learning with particle swarm optimization
and barebones differential evolution. INTECH Open Access Publisher, 2009.
M.G. Omran, Codeq: an effective metaheuristic for continuous global optimisa-
tion, Int. J. Metaheuristics 1 (2) (2010) 108-131.

M.G. Omran, S. Al-Sharhan, Using opposition-based learning to improve the
performance of particle swarm optimization, in Swarm Intelligence Symposium,
2008. SIS 2008. IEEE, IEEE, 2008, pp. 1-6.

M.G. Omran, A.P. Engelbrecht, Free search differential evolution, in Evolutionary
Computation, 2009. CEC'09. IEEE Congress on, IEEE, 2009, pages 110—117.
M.G. Omran, Z.W. Geem, A. Salman, Improving the performance of harmony
search using opposition-based learning and quadratic interpolation, Int. J. Math.
Model. Numer. Optim. 2 (1) (2010) 28-50.

H.-b. Ouyang, L.-q. Gao, X.-y. Kong, D.-x. Zou, S. Li, Teaching-learning based
optimization with global crossover for global optimization problems, Appl. Math.
Comput. 265 (2015) 533-556.

M. Ovreiu, D. Simon, Biogeography-based optimization of neuro-fuzzy system
parameters for diagnosis of cardiac disease, in Proceedings of the 12th annual
conference on Genetic and evolutionary computation, ACM, 2010, pp. 1235—
1242.

S. OZYON, C. YASAR, B. DURMUS, H. TEMURTAS, Opposition-based gravita-
tional search algorithm applied to economic power dispatch problems consisting
of thermal units with emission constraints, Turk. J. Electr. Eng. Comput. Sci. 23
(2015) 2278-2288 (Sup. 1).

L.D. Pacifico, T.B. Ludermir, Improved group search optimization based on
opposite populations for feedforward networks training with weight decay, in
Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on,
IEEE, 2012, pp. 474-479.

W. Pan, K. Li, M. Wang, J. Wang, B. Jiang, Adaptive randomness: A new
population initialization method. Mathematical Problems in Engineering, 2014,
2014.

L. Panait, S. Luke, A comparison of two competitive fitness functions, in Genetic
and Evolutionary Computation Conference (GECCO 2002) 2002, pages 503—511.
S.-Y. Park, Y.-J. Kim, J.-J. Kim, J.-J. Lee, Speeded-up cuckoo search using
opposition-based learning, in Control, Automation and Systems (ICCAS), 2014
14th International Conference on, IEEE, 2014, pp. 535-539.

S.-Y. Park, J.-J. Lee, Stochastic opposition-based learning using a beta distribu-
tion in differential evolution. 2015.

R. Patel, M. Raghuwanshi, L. Malik, A preliminary study on impact of dying of
solution on performance of multi-objective genetic algorithm, in Proceedings of
the Third International Conference on Soft Computing for Problem Solving,
Springer, 2014, pp. 1-15.

R. Patel, M. Raghuwanshi, L.G. Malik, Decomposition based multi-objective
genetic algorithm (dmoga) with opposition based learning, in Computational
Intelligence and Communication Networks (CICN), 2012 Proceedings of the
Fourth International Conference on, IEEE, 2012, pp. 605-610.

S. Paul, P.K. Roy, Optimal design of power system stabilizer using oppositional
gravitational search algorithm, in Non Conventional Energy (ICONCE), 2014 1st
International Conference on, IEEE, 2014, pp. 282-287.

Y. Pei, H. Takagi, Fitness landscape approximation by adaptive support vector
regression with opposition-based learning, in Systems, Man, and Cybernetics
(SMC), 2013 IEEE International Conference on, IEEE, 2013, pp. 1329-1334.

Y. Pei, H. Takagi, Triple and quadruple comparison-based interactive differential
evolution and differential evolution, in Proceedings of the twelfth workshop on
Foundations of genetic algorithms XII, ACM, 2013, pp. 173-182.

L. Peng, Y. Wang, G. Dai, A novel opposition-based multi-objective differential
evolution algorithm for multi-objective optimization, in Advances in Computation
and Intelligence, Springer, 2008, pp. 162—-170.

20

[199]

[200]

[201]

[202]

[203]

[204]

[205]
[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]
[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

AH. Pham, Discrete optimal sizing of truss using adaptive directional differential
evolution, Adv. Comput. Des. 1 (3) (2016) 275-296.

R. Poladkov4, J. Tvrdik, Various mutation strategies in enhanced competitive
differential evolution for constrained optimization, in Differential Evolution
(SDE), 2011 IEEE Symposium on, IEEE, 2011, pp. 1-8.

F.M. Pour, A.A. Gharaveisi, Opposition-based discrete action reinforcement
learning automata algorithm case study: optimal design of a pid controller, Turk.
J. Electr. Eng. Comput. Sci. 21 (6) (2013) 1603-1614.

K.V. Price, An introduction to differential evolution. 1999.

A. Qin, F. Forbe, Dynamic regional harmony search algorithm with opposition and
local learning.

A.R. Rahman, B. Santosa, S.E. Wiratno, Hybrid differential evolution and
bottleneck heuristic algorithm to solve bi-objective hybrid flow shop scheduling
unrelated parallel machines problem, in International Conference on Industrial
Engineering and Operations Management, pp. 1339-1347.

S. Rahnamayan, Opposition-based differential evolution. 2007.

S. Rahnamayan, J. Jesuthasan, F. Bourennani, H. Salehinejad, G.F. Naterer,
Computing opposition by involving entire population, in Evolutionary
Computation (CEC), 2014 IEEE Congress on, pp. 1800—-1807. IEEE, 2014.

S. Rahnamayan, H.R. Tizhoosh, Image thresholding using micro opposition-based
differential evolution (micro-ode), in Evolutionary Computation, 2008. CEC 2008.
(IEEE World Congress on Computational Intelligence). IEEE Congress on, pp.
1409-1416. IEEE, 2008.

S. Rahnamayan, H.R. Tizhoosh, M. Salama, Opposition-based differential evolu-
tion algorithms, in Evolutionary Computation, 2006. CEC 2006. IEEE Congress
on, pp. 2010-2017. IEEE.

S. Rahnamayan, H. R. Tizhoosh, M. Salama, Quasi-oppositional differential
evolution. in Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pp.
2229-2236. IEEE, 2007.

S. Rahnamayan, H.R. Tizhoosh, M. Salama, Opposition-based differential evolu-
tion, IEEE Trans. Evolut. Comput. 12 (1) (2008) 64-79.

S. Rahnamayan G.G. Wang, Investigating in scalability of opposition-based
differential evolution, in Proceedings of the 8th WSEAS International Conference
on Simulation, Modeling and Optimization (SMOO08), Santander, Cantabria,
Spain, pp. 105-111, 2008.

S. Rahnamayan, G.G. Wang, Solving large scale optimization problems by
opposition-based differential evolution (ode), WSEAS Trans. Comput. 7 (10)
(2008) 1792-1804.

S. Rahnamayan, G.G. Wang, Center-based initialization for large-scale black-box
problems, in Proceedings of the 8th WSEAS international conference on Artificial
intelligence, knowledge engineering and data bases, pp. 531-541. World Scientific
and Engineering Academy and Society (WSEAS), 2009.

S. Rahnamayan, G.G. Wang, Center-based sampling for population-based algo-
rithms, in Evolutionary Computation, 2009. CEC'09. IEEE Congress on, pp. 933—
938. IEEE, 2009.

S. Rahnamayan, G.G. Wang, Toward effective initialization for large-scale search
spaces, Trans. Syst. 8 (3) (2009) 355-367.

S. Rahnamayan, G.G. Wang, M. Ventresca, An intuitive distance-based explana-
tion of opposition-based sampling, Appl. Soft Comput. 12 (9) (2012) 2828-2839.
A. Rajasekhar, S. Das, Teaching learning opposition based optimization for the
location of median line in 3-d space, in Swarm, Evolutionary, and Memetic
Computing, pp. 331-338. Springer, 2012.

A. Rajasekhar, R.K. Jatoth, A. Abraham, Design of intelligent pid/pi A d u speed
controller for chopper fed de motor drive using opposition based artificial bee
colony algorithm, Eng. Appl. Artif. Intell. 29 (2014) 13-32.

A. Rajasekhar, R. Rani, K. Ramya, A. Abraham, Elitist teaching learning
opposition based algorithm for global optimization, in Systems, Man, and
Cybernetics (SMC), 2012 IEEE International Conference on, pp. 1124-1129.
IEEE, 2012.

G. Ram, D. Mandal, R. Kar, S.P. Ghoshal, Opposition-based bat algorithm for
optimal design of circular and concentric circular arrays with improved far-field
radiation characteristics, International Journal of Numerical Modelling:
Electronic Networks, Devices and Fields, 2015.

A. Rashid, B. Kim, A. Khambampati, S. Kim, K. Kim, An oppositional biogeo-
graphy-based optimization technique to reconstruct organ boundaries in the
human thorax using electrical impedance tomography, Physiol. Meas. 32 (7)
(2011) 767.

M. Rashid, A.R. Baig, Improved opposition-based pso for feedforward neural
network training, in Information Science and Applications (ICISA), 2010
International Conference on, pp. 1-6. IEEE, 2010.

S. Reghunathan, T. Baby, Performance evaluation of opposition based differential
evolution on non-convex economic dispatch, in Advances in Power Conversion
and Energy Technologies (APCET), 2012 International Conference on, pp. 1-6.
IEEE, 2012.

M. Remli, S.b. Deris, M. Jamous, M.S. Mohamad, A. Abdullah, Service composi-
tion optimization using differential evolution and opposition-based learning.
2015.

N. Rojas-Morales, M.-C. Riff, E. Montero, Ants can learn from the opposite, in
Proceedings of the 2016 on Genetic and Evolutionary Computation Conference,
pp. 389-396. ACM, 2016.

N. Rojas-Morales, M.-C. Riff, E. Montero, Learning from the opposite: Strategies
for ants that solve multidimensional knapsack problem, in Evolutionary
Computation (CEC), 2016 IEEE Congress on, pp. 193—-200. IEEE, 2016.

C.D. Rosin, R.K. Belew, New methods for competitive coevolution, Evolut.
Comput. 5 (1) (1997) 1-29.

A. Roy, S. Dutta, P.K. Roy, Automatic generation control by smes-smes controllers


http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref81
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref81
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref81
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref82
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref82
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref82
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref83
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref83
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref83
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref84
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref84
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref84
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref85
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref85
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref85
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref85
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref86
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref86
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref87
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref87
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref87
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref88
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref88
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref88
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref89
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref89
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref89
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref89
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref90
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref90
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref91
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref91
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref91
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref92
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref92
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref93
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref93
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref93
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref94
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref94
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref95
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref95
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref96
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref96
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref96
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref97
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref97
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref97
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref97
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref98
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref98

S. Mahdavi et al.

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

of two-area hydro-hydro system, in Non Conventional Energy (ICONCE), 2014 1st
International Conference on, pages 302-307. IEEE, 2014.

P. Roy, D. Mandal, Quasi-oppositional biogeography-based optimization for
multi-objective optimal power flow, Electr. Power Compon. Syst. 40 (2) (2011)
236-256.

P.K. Roy, S. Bhui, Multi-objective quasi-oppositional teaching learning based
optimization for economic emission load dispatch problem, Int. J. Electr. Power
Energy Syst. 53 (2013) 937-948.

P.K. Roy, D. Mandal, Optimal reactive power dispatch using quasi-oppositional
biogeography-based optimization, Int. J. Energy Optim. Eng. (IJEOE) 1 (4)
(2012) 38-55.

P.K. Roy, C. Paul, Quasi-oppositional gravitational search algorithm applied to
short term hydrothermal scheduling problems, Int. J. Power Energy Convers. 6
(2) (2015) 165-185.

P.K. Roy, C. Paul, S. Sultana, Oppositional teaching learning based optimization
approach for combined heat and power dispatch, Int. J. Electr. Power Energy Syst.
57 (2014) 392-403.

P.K. Roy, R. Sarkar, Solution of unit commitment problem using quasi-opposi-
tional teaching learning based algorithm, Int. J. Electr. Power Energy Syst. 60
(2014) 96-106.

P.K. Roy, A. Sur, D.K. Pradhan, Optimal short-term hydro-thermal scheduling
using quasi-oppositional teaching learning based optimization, Eng. Appl. Artif.
Intell. 26 (10) (2013) 2516-2524.

W.F. Sacco, A.C. Rios-Coelho, N. Henderson, Testing population initialisation
schemes for differential evolution applied to a nuclear reactor core design, Int. J.
Nucl. Energy Sci. Technol. 8 (3) (2014) 192-212.

S.K. Saha, R. Kar, D. Mandal, S.P. Ghoshal, V. Mukherjee, A new design method
using opposition-based bat algorithm for iir system identification problem, Int. J.
Bio-Inspired Comput. 5 (2) (2013) 99-132.

F. Sahba, H.R. Tizhoosh, Opposite actions in reinforced image segmentation, in
Oppositional Concepts in Computational Intelligence, pp. 287—-297. Springer,
2008.

F. Sahba, H.R. Tizhoosh, M.M. Salama, Application of opposition-based reinfor-
cement learning in image segmentation, in Computational Intelligence in Image
and Signal Processing, 2007. CIISP 2007. IEEE Symposium on, pp. 246—251.
IEEE, 2007.

F. Saki, A. Tahmasbi, S.B. Shokouhi, A novel opposition-based classifier for mass
diagnosis in mammography images, in Biomedical Engineering (ICBME), 2010
17th Iranian Conference of, pages 1-4. IEEE, 2010.

F. Saki, A. Tahmasbi, H. Soltanian-Zadeh, S.B. Shokouhi, Fast opposite weight
learning rules with application in breast cancer diagnosis, Comput. Biol. Med. 43
(1) (2013) 32—-41.

H. Salehinejad, S. Rahnamayan, H.R. Tizhoosh, Type-ii opposition-based differ-
ential evolution, in Evolutionary Computation (CEC), 2014 IEEE Congress on, pp.
1768-1775. 1IEEE, 2014.

G. Samanta, A. Chandra, A novel design strategy of low-pass fir filter using
opposition-based differential evolution algorithm, in Electrical, Electronics and
Computer Science (SCEECS), 2012 IEEE Students' Conference on, pp. 1-4. IEEE,
2012.

Z. Seif, M.B. Ahmadi, An opposition-based algorithm for function optimization,
Eng. Appl. Artif. Intell. 37 (2015) 293-306.

Z. Seif, M.B. Ahmadi, Opposition versus randomness in binary spaces, Appl. Soft
Comput. 27 (2015) 28-37.

F. Shahzad, A.R. Baig, S. Masood, M. Kamran, N. Naveed, Opposition-based
particle swarm optimization with velocity clamping (ovepso), in Advances in
Computational Intelligence, pp. 339—348. Springer, 2009.

F. Shahzad, S. Masood, N.K. Khan, Probabilistic opposition-based particle swarm
optimization with velocity clamping, Knowl. Inf. Syst. 39 (3) (2014) 703-737.
G. Shankar, V. Mukherjee, Quasi oppositional harmony search algorithm based
controller tuning for load frequency control of multi-source multi-area power
system, Int. J. Electr. Power Energy Syst. 75 (2016) 289-302.

H. Sharma, J.C. Bansal, K. Arya, Opposition based 1évy flight artificial bee colony,
Memetic Comput. 5 (3) (2013) 213-227.

T.K. Sharma, M. Pant, Intermediate population based differential evolution
algorithm, in Computational Intelligence and Information Technology, pp. 152—
156. Springer, 2011.

B. Shaw, V. Mukherjee, S. Ghoshal, A novel opposition-based gravitational search
algorithm for combined economic and emission dispatch problems of power
systems, Int. J. Electr. Power Energy Syst. 35 (1) (2012) 21-33.

B. Shaw, V. Mukherjee, S. Ghoshal, Solution of reactive power dispatch of power
systems by an opposition-based gravitational search algorithm, Int. J. Electr.
Power Energy Syst. 55 (2014) 29-40.

B. Shaw, V. Mukherjee, S.P. Ghoshal, Solution of optimal reactive power dispatch
by an opposition-based gravitational search algorithm, in Swarm, Evolutionary,
and Memetic Computing, pp. 558-567. Springer, 2013.

C.K. Shiva, V. Mukherjee, Automatic generation control of interconnected power
system for robust decentralized random load disturbances using a novel quasi-
oppositional harmony search algorithm, Int. J. Electr. Power Energy Syst. 73
(2015) 991-1001.

C.K. Shiva, V. Mukherjee, Comparative performance assessment of a novel quasi-
oppositional harmony search algorithm and internal model control method for
automatic generation control of power systems, Gener., Transm. Distrib., IET 9
(11) (2015) 1137-1150.

C.K. Shiva, V. Mukherjee, A novel quasi-oppositional harmony search algorithm
for automatic generation control of power system, Appl. Soft Comput. 35 (2015)
749-765.

21

[257]

[258]

[259]

[260]

[261]

[262]

[263]
[264]
[265]

[266]

[267]
[268]

[269]

[270]
[271]

[272]
[273]
[274]
[275]
[276]

[277]

[278]

[279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

[287]

[288]

[289]

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

C.K. Shiva, V. Mukherjee, Automatic generation control of hydropower systems
using a novel quasi-oppositional harmony search algorithm, Electr. Power
Compon. Syst. 44 (13) (2016) 1478-1491.

M. Shokri, Knowledge of opposite actions for reinforcement learning, Appl. Soft
Comput. 11 (6) (2011) 4097-4109.

M. Shokri, H.R. Tizhoosh, M. Kamel, Opposition-based q (A) algorithm, in Neural
Networks, 2006. IJCNN'06. International Joint Conference on, pp. 254-261.
IEEE, 2006.

M. Shokri, H.R. Tizhoosh, M.S. Kamel, Opposition-based q (1) with non-
markovian update, in Approximate Dynamic Programming and Reinforcement
Learning, 2007. ADPRL 2007. IEEE International Symposium on, pp. 288—295.
1IEEE, 2007.

M. Shokri, H.R. Tizhoosh, M.S. Kamel, The concept of opposition and its use in g-
learning and q (A) techniques. in Oppositional Concepts in Computational
Intelligence, pp. 233—-253. Springer, 2008.

M. Shokri, H.R. Tizhoosh, M.S. Kamel, Tradeoff between exploration and
exploitation of oq (A) with non-markovian update in dynamic environments, in
Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computational
Intelligence). IEEE International Joint Conference on, pp. 2915-2921. IEEE,
2008.

M. Shokri, H.R. Tizhoosh, M.S. Kamel, Oppositional target domain estimation
using grid-based simulation, Appl. Soft Comput. 9 (1) (2009) 423-430.

D. Sidhu, J. Dhillon, D. Kaur, Hybrid heuristic search method for design of digital
iir filter with conflicting objectives, Soft Comput. (2016) 1-16.

D. Sidhu, J.S. Dhillon, D. Kaur, Design of higher order digital iir low pass filter
using hybrid differential evolution, memory 12 (2016) 21.

A. Silva, A. Neves, T. Gongalves, Using scout particles to improve a predator-prey
optimizer, in Adaptive and Natural Computing Algorithms, pp. 130-139.
Springer, 2013.

D. Simon, Biogeography-based optimization, IEEE Trans. Evolut. Comput. 12 (6)
(2008) 702-713.

B. Singh, J.S. Dhillon, Y. Brar, A hybrid differential evolution method for the
design of iir digital filter, ACEEE Int. J. Signal Image Process. 4 (1) (2013) 1-10.
B.J. Singh, J.S. Dhillon, Higher order optimal stable digital iir filter design using
heuristic optimization, in Proceedings of Informing Science & IT Education
Conference (InSITE) 2015, pages 505-520, 2015.

D. SINGH, J.S. DHILLON, Fuzzy based design of digital iir filter using etlbo.

D. Singh, J.S. Dhillon, Teaching-learning based optimization technique for the
design of Ip and hp digital iir filter, Recent Adv. Electr. Eng. Electron. Devices
(2013) 203-208.

D. Singh, R. Kaur, Hybrid optimization technique for the design of digital
differentiator, Recent Res. Circuits, Syst., Mech. Transp. Syst. (2011) 52-57.

R. Singh, V. Mukherjee, S. Ghoshal, The opposition-based harmony search
algorithm, J. Inst. Eng. (India): Ser. B 94 (4) (2013) 247-256.

R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces, J. Glob. Optim. 11 (4) (1997) 341-359.

B. Subudhi, D. Jena, Nonlinear system identification using opposition based
learning differential evolution and neural network techniques. 2009.

B. Subudhi, D. Jena, A differential evolution based neural network approach to
nonlinear system identification, Appl. Soft Comput. 11 (1) (2011) 861-871.

S. Sultana, P.K. Roy, Multi-objective quasi-oppositional teaching learning based
optimization for optimal location of distributed generator in radial distribution
systems, Int. J. Electr. Power Energy Syst. 63 (2014) 534-545.

S. Sultana, P.K. Roy, Oppositional krill herd algorithm for optimal location of
capacitor with reconfiguration in radial distribution system, Int. J. Electr. Power
Energy Syst. 74 (2016) 78-90.

P. Surekha, D.S. Sumathi, Solving economic load dispatch problems using
differential evolution with opposition based learning, Wseas Trans. Inf. Sci. Appl.
1 (2012).

P. Surekha, S. Sumathi, An improved differential evolution algorithm for optimal
load dispatch in power systems including transmission losses, IU- J. Electr.
Electron. Eng. 11 (2) (2011) 1379-1390.

A. Tahmasbi, F. Saki, S.B. Shokouhi, Classification of benign and malignant
masses based on zernike moments, Comput. Biol. Med. 41 (8) (2011) 726-735.
T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to
modeling and control, IEEE Trans. Syst., Man Cybern. 1 (1985) 116-132.

A. Talukder, K. Deb, S. Rahnamayan, Maintaining diversity in the bounded
pareto-set: A case of opposition based solution generation scheme, in Proceedings
of the 2016 on Genetic and Evolutionary Computation Conference Companion,
pp. 945-951. ACM, 2016.

T.G. Tan, J. Teo, Evolving opposition-based pareto solutions: Multiobjective
optimization using competitive coevolution, in Oppositional Concepts in
Computational Intelligence, pp. 161-206. Springer, 2008.

J. Tang, X. Zhao, An enhanced opposition-based particle swarm optimization, in
Intelligent Systems, 2009. GCIS'09. WRI Global Congress on, volume 1, pp. 149—
153. IEEE, 2009.

J. Tang, X. Zhao, On the improvement of opposition-based differential evolution,
in Natural Computation (ICNC), 2010 Sixth International Conference on, volume
5, pp. 2407-2411. IEEE, 2010.

J. Tao, A particle swarm optimization algorithm for neural networks in recogni-
tion of maize leaf diseases, in Computer and Computing Technologies in
Agriculture VIII, pp. 495-505. Springer, 2014.

M. Tarkeshwar, V. Mukherjee, A novel quasi-oppositional harmony search
algorithm and fuzzy logic controller for frequency stabilization of an isolated
hybrid power system, Int. J. Electr. Power Energy Syst. 66 (2015) 247-261.

M. Tarkeshwar, V. Mukherjee, Quasi-oppositional harmony search algorithm and


http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref99
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref99
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref99
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref100
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref100
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref100
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref101
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref101
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref101
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref102
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref102
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref102
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref103
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref103
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref103
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref104
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref104
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref104
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref105
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref105
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref105
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref106
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref106
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref106
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref107
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref107
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref107
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref108
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref108
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref108
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref109
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref109
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref110
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref110
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref111
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref111
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref112
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref112
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref112
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref113
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref113
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref114
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref114
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref114
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref115
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref115
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref115
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref116
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref116
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref116
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref116
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref117
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref117
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref117
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref117
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref118
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref118
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref118
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref119
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref119
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref119
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref120
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref120
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref121
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref121
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref122
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref122
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref123
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref123
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref124
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref124
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref125
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref125
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref126
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref126
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref126
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref127
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref127
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref128
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref128
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref129
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref129
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref130
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref130
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref131
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref131
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref131
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref132
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref132
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref132
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref133
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref133
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref133
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref134
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref134
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref134
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref135
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref135
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref136
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref136
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref137
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref137
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref137
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref138

S. Mahdavi et al.

[290]

[291]

[292]

[293]

[294]

[295]

[296]
[297]

[298]

[299]

[300]

[301]

[302]

[303]

[304]

[305]

[306]

[307]

[308]

[309]

[310]

[311]

[312]

[313]

[314]

[315]

[316]

[317]

fuzzy logic controller for load frequency stabilisation of an isolated hybrid power
system, Gener., Transm. Distrib., IET 9 (5) (2015) 427-444.

M.F. Tasgetiren, P. Suganthan, S. Ozcan, D. Kizilay, A differential evolution
algorithm with a variable neighborhood search for constrained function optimi-
zation, in Adaptation and hybridization in computational intelligence, pp. 171-
184. Springer, 2015.

R. Thangaraj, M. Pant, Differential evolution algorithm for solving multi-objective
optimization problems, Proceedings: Recent Advances in Mathematics,
Cambridge, MA, USA, pp. 40—45, 2013.

R. Thangaraj, M. Pant, T.R. Chelliah, A. Abraham, Opposition based chaotic
differential evolution algorithm for solving global optimization problems, in
Nature and Biologically Inspired Computing (NaBIC), 2012 Fourth World
Congress on, pp. 1-7. IEEE, 2012.

B.S. Theja, A. Rajasekhar, A. Abraham, An optimal design of coordinated pi based
pss with tesc controller using modified teaching learning based optimization, in
Nature and Biologically Inspired Computing (NaBIC), 2013 World Congress on,
pages 99-106. IEEE, 2013.

K. Thenmalar, S. Ramesh, Hybrid fuzzy-opposition based differential evolution
algorithm (fodea) for dynamic economic emission power dispatch (eepd) with
emission constraints and valve point effects, Middle-East J. Sci. Res. 23 (10)
(2015) 2507-2520.

K. Thenmalar, S. Ramesh, S. Thiruvenkadam, Opposition based differential
evolution algorithm for dynamic economic emission load dispatch (eeld) with
emission constraints and valve point effects, J. Electr. Eng. Technol. 10 (4) (2015)
1508-1517.

H. Tizhoosh, M. Ventresca, Oppositional concepts in computational intelligence,
ser. Studies in Computational Intelligence. Berlin, Germany: Springer, 155, 2008.
H.R. Tizhoosh, Opposition-based learning: a new scheme for machine intelli-
gence, in null, pages 695-701. IEEE, 2005.

H.R. Tizhoosh, Reinforcement learning based on actions and opposite actions, in
International conference on artificial intelligence and machine learning, volume
414, 2005.

H.R. Tizhoosh, Opposite fuzzy sets with applications in image processing, in
IFSA/EUSFLAT Conference, pp. 36—41, 2009.

H.R. Tizhoosh, S. Rahnamayan, Learning opposites with evolving rules, in Fuzzy
Systems (FUZZ-IEEE), 2015 IEEE International Conference on, pages 1-8. IEEE,
2015.

H.R. Tizhoosh, F. Sahba, Quasi-global oppositional fuzzy thresholding, in Fuzzy
Systems, 2009. FUZZ-IEEE 2009. IEEE International Conference on, pp. 1346—
1351. IEEE, 2009.

H.R. Tizhoosh, M. Ventresca, S. Rahnamayan, Opposition-based computing. in
Oppositional Concepts in Computational Intelligence, pp. 11-28. Springer, 2008.
O.E. Turgut, M.S. Turgut, M.T. Coban, Design and economic investigation of shell
and tube heat exchangers using improved intelligent tuned harmony search
algorithm, Ain Shams Eng. J. 5 (4) (2014) 1215-1231.

J. Tvrdik, R. Polakov4, Enhanced competitive differential evolution for con-
strained optimization, in Computer Science and Information Technology
(IMCSIT), Proceedings of the 2010 International Multiconference on, pages 909-
915. IEEE, 2010.

J. Tvrdik, R. Polakova, J. Veselsky ", P. Bujok, Adaptive variants of differential
evolution: Towards control-parameter-free optimizers, in Handbook of
Optimization, pp. 423—-449. Springer, 2013.

P. Upadhyay, R. Kar, D. Mandal, S. Ghoshal, V. Mukherjee, A novel design method
for optimal iir system identification using opposition based harmony search
algorithm, J. Frankl. Inst. 351 (5) (2014) 2454—2488.

M. Ventresca, H.R. Tizhoosh, Improving the convergence of backpropagation by
opposite transfer functions, in Neural Networks, 2006. IJCNN'06. International
Joint Conference on, pp. 4777-4784. IEEE, 2006.

M. Ventresca, H.R. Tizhoosh, Opposite transfer functions and backpropagation
through time, in Foundations of Computational Intelligence, 2007. FOCI 2007.
IEEE Symposium on, pages 570-577. IEEE, 2007.

M. Ventresca, H.R. Tizhoosh, Simulated annealing with opposite neighbors. in
Foundations of Computational Intelligence, 2007. FOCI 2007. IEEE Symposium
on, pages 186-192. IEEE, 2007.

M. Ventresca, H.R. Tizhoosh, A diversity maintaining population-based incre-
mental learning algorithm, Inf. Sci. 178 (21) (2008) 4038—-4056.

M. Ventresca, H.R. Tizhoosh, Numerical condition of feedforward networks with
opposite transfer functions, in Neural Networks, 2008. IJCNN 2008.(IEEE World
Congress on Computational Intelligence).IEEE International Joint Conference on,
pp. 3233-3240. IEEE, 2008.

M. Ventresca, H.R. Tizhoosh, Two frameworks for improving gradient-based
learning algorithms, in Oppositional Concepts in Computational Intelligence, pp.
255-284. Springer, 2008.

M. Ventresca, H.R. Tizhoosh, Improving gradient-based learning algorithms for
large scale feedforward networks, in Neural Networks, 2009. IJCNN 2009.
International Joint Conference on, pp. 3212-3219. IEEE, 2009.

O.P. Verma, D. Aggarwal, T. Patodi, Opposition and dimensional based modified
firefly algorithm, Expert Syst. Appl. 44 (2016) 168-176.

A. Wang, X.S. He, F. Wang, Opposition-based particle swarm optimization with
plow operator, in Cross Strait Quad-Regional Radio Science and Wireless
Technology Conference (CSQRWC), 2011, volume 2, pp. 1696—1699. IEEE, 2011.
B. Wang, A novel artificial bee colony algorithm based on modified search strategy
and generalized opposition-based learning, J. Intell. Fuzzy Syst. 28 (3) (2015)
1023-1037.

D. Wang, C. Xiong, X. Zhang, An opposition-based group search optimizer with
diversity guidance, Mathematical Problems in Engineering, 2015, 2015.

22

[318]

[319]

[320]

[321]

[322]

[323]

[324]
[325]

[326]

[327]

[328]

[329]

[330]

[331]

[332]

[333]

[334]

[335]

[336]

[337]

[338]

[339]

[340]
[341]

[342]

[343]

[344]

[345]

[346]

[347]

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

H. Wang, Opposition-based barebones particle swarm for constrained nonlinear
optimization problems, Mathematical Problems in Engineering, 2012, 2012.

H. Wang, H. Li, Y. Liu, H. Li, S. Zeng, Opposition-based particle swarm algorithm
with cauchy mutation, in Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, pp. 4750-4756. IEEE, 2007.

H. Wang, L. Liang, Z. Niu, Z. He, Identification of ctgs for complex products based
on mutual information and improved gravitational search algorithm,
Mathematical Problems in Engineering, 2015, 2015.

H. Wang, H. Ouyang, L. Gao, W. Qin, Opposition-based learning harmony search
algorithm with mutation for solving global optimization problems, in Control and
Decision Conference (2014 CCDC), The 26th Chinese, pp. 1090-1094. IEEE,
2014.

H. Wang, S. Rahnamayan, Z. Wu, Parallel differential evolution with self-adapting
control parameters and generalized opposition-based learning for solving high-
dimensional optimization problems, J. Parallel Distrib. Comput. 73 (1) (2013)
62-73.

H. Wang, S. Rahnamayan, S. Zeng, Generalised opposition-based differential
evolution: an experimental study, Int. J. Comput. Appl. Technol. 43 (4) (2012)
311-319.

H. Wang, H. Sun, C. Li, S. Rahnamayan, J.-S. Pan, Diversity enhanced particle
swarm optimization with neighborhood search, Inf. Sci. 223 (2013) 119-135.
H. Wang, W. Wang, H. Sun, Firefly algorithm with generalised opposition-based
learning, Int. J. Wirel. Mob. Comput. 9 (4) (2015) 370-376.

H. Wang, W. Wang, H. Sun, Z. Cui, S. Rahnamayan, S. Zeng, A new cuckoo search
algorithm with hybrid strategies for flow shop scheduling problems, Soft Comput.
(2016) 1-11.

H. Wang, W. Wang, H. Sun, S. Rahnamayan, Using opposition-based learning to
enhance differential evolution: A comparative study, in Electrical & Computer
Engineering (CCECE), 2016 25th IEEE Canadian Conference on. IEEE, 2016.
H. Wang, Z. Wu, Y. Liu, J. Wang, D. Jiang, L. Chen, Space transformation search:
a new evolutionary technique, in Proceedings of the first ACM/SIGEVO Summit
on Genetic and Evolutionary Computation, pages 537-544. ACM, 2009.

H. Wang, Z. Wu, S. Rahnamayan, Enhanced opposition-based differential
evolution for solving high-dimensional continuous optimization problems, Soft
Comput. 15 (11) (2011) 2127-2140.

H. Wang, Z. Wu, S. Rahnamayan, L. Kang, A scalability test for accelerated de
using generalized opposition-based learning, in Intelligent Systems Design and
Applications, 2009. ISDA'09. Proceedings of the Ninth International Conference
on, pp. 1090-1095. IEEE, 2009.

H. Wang, Z. Wu, S. Rahnamayan, J. Wang, Diversity analysis of opposition-based
differential evolutionan experimental study, in Advances in Computation and
Intelligence, pp. 95-102. Springer, 2010.

H. Wang, Z. Wu, J. Wang, X. Dong, S. Yu, C. Chen, A new population initialization
method based on space transformation search, in Natural Computation, 2009.
ICNC'09. Fifth International Conference on, volume 5, pages 332-336. IEEE,
2009.

J. Wang, Particle swarm optimization with adaptive parameter control and
opposition, J. Comput. Inf. Syst. 7 (12) (2011) 4463-4470.

J. Wang, An enhanced differential evolution algorithm for solving large scale
optimisation problems on graphics hardware, Int. J. Comput. Appl. Technol. 46
(3) (2013) 259-266.

J. Wang, Enhanced differential evolution with generalised opposition-based
learning and orientation neighbourhood mining, Int. J. Comput. Sci. Math. 6 (1)
(2015) 49-58.

J. Wang, Z. Wu, H. Wang, Hybrid differential evolution algorithm with chaos and
generalized opposition-based learning, in Advances in Computation and
Intelligence, pp. 103—111. Springer, 2010.

J. Wang, Z. Wu, H. Wang, A novel particle swarm algorithm for solving parameter
identification problems on graphics hardware, Int. J. Comput. Sci. Eng. 6 (1-2)
(2011) 43-51.

K. Wang, W. Ma, H. Luo, H. Qin, Coordinated scheduling of production and
transportation in a two-stage assembly flowshop, Int. J. Prod. Res. (2016) 1-21.
W. Wang, H. Wang, S. Rahnamayan, Improving comprehensive learning particle
swarm optimiser using generalised opposition-based learning, Int. J. Model.,
Identif. Control 14 (4) (2011) 310-316.

Y. Wang, Z. Cai, Q. Zhang, Enhancing the search ability of differential evolution
through orthogonal crossover, Inf. Sci. 185 (1) (2012) 153-177.

W. Wei, J. Zhou, F. Chen, H. Yuan, Constrained differential evolution using
generalized opposition-based learning, Soft Comput. (2016) 1-25.

Y. Wen, L. Liu, Z. Wang, J. Kou, Multi-ucavs targets assignment using opposition-
based genetic algorithm, in Control and Decision Conference (CCDC), 2015 27th
Chinese, pp. 6026—6030. IEEE, 2015.

L.A. Wong, H. Shareef, A. Mohamed, A.A. Ibrahim, An enhanced opposition-
based firefl y algorithm for solving complex optimization problems (algoritma
kelip berasaskan teori tentangan untuk penyelesaian masalah pengoptimuman
kompleks), J. Kejuruter. (J. Eng.) 26 (2014) 89-96.

L.A. Wong, H. Shareef, A. Mohamed, A.A. Ibrahim, Optimal battery sizing in
photovoltaic based distributed generation using enhanced opposition-based firefly
algorithm for voltage rise mitigation. The Scientific World Journal, 2014, 2014.
X. Wu, J. Kofman, H.R. Tizhoosh, Active exploratory g-learning for large
problems, in Systems, Man and Cybernetics, 2007. ISIC. IEEE International
Conference on, pp. 4040-4045. IEEE, 2007.

Y. Wu, B. Zhao, J. Guo, A fast opposition-based differential evolution with cauchy
mutation, in Intelligent Systems (GCIS), 2012 Third Global Congress on, pages
72-75. IEEE, 2012.

Z. Wu, Z. Ni, C. Zhang, L. Gu, Opposition based comprehensive learning particle


http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref138
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref138
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref139
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref139
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref139
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref139
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref140
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref140
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref140
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref140
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref141
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref141
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref141
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref142
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref142
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref142
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref143
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref143
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref144
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref144
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref145
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref145
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref145
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref146
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref146
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref146
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref146
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref147
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref147
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref147
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref148
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref148
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref149
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref149
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref150
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref150
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref150
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref151
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref151
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref151
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref152
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref152
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref153
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref153
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref153
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref154
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref154
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref154
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref155
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref155
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref155
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref156
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref156
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref157
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref157
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref157
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref158
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref158
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref159
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref159
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref160
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref160
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref160
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref160

S. Mahdavi et al.

[348]

[349]

[350]

[351]

[352]

[353]

[354]

[355]

[356]
[357]
[358]
[359]

[360]

[361]
[362]

[363]

[364]

[365]

[366]

swarm optimization, in Intelligent System and Knowledge Engineering, 2008.
ISKE 2008. 3rd International Conference on, volume 1, pp. 1013—-1019. IEEE,
2008.

Z. Wu, Z. Ni, C. Zhang, L. Gu, A novel pso for multi-stage portfolio planning, in
2009 International Conference on Artificial Intelligence and Computational
Intelligence, pages 71-77. IEEE, 2009.

W.-1. Xiang, M.-q. An, Y.-z. Li, R.-c. He, J.-f. Zhang, An improved global-best
harmony search algorithm for faster optimization, Expert Syst. Appl. 41 (13)
(2014) 5788-5803.

W.-l. Xiang, X.-1. Meng, M.-q. An, Y.-z. Li, M.-x. Gao, An enhanced differential
evolution algorithm based on multiple mutation strategies. Computational
intelligence and neuroscience, 2015, 2015.

C. Xie, W. Chen, W. Yu, A hybrid group search optimizer with opposition-based
learning and differential evolution, in Computational Intelligence and Intelligent
Systems, pp. 3—12. Springer, 2015.

J. Xie, J. Yang, Improved differential evolution for global optimization, in
Information Management and Engineering (ICIME), 2010 The 2nd IEEE
International Conference on, pp. 651-654. IEEE, 2010.

M. Xiongfa, L. Ling, Bacterial foraging algorithm based on quantum-behaved
particle swarm optimization and opposition-based learning, J. Comput. Inf. Syst.
3(2013) 1157-1165.

D. Xu, X. Ai, An improved diversity guided particle swarm optimization, in
Proceedings of the Sixth International Symposium on Neural Networks (ISNN
2009), pages 623-630. Springer, 2009.

H. Xu, C.D. Erdbrink, V.V. Krzhizhanovskaya, How to speed up optimization?
Opposite-center learning and its application to differential evolution, Procedia
Comput. Sci. 51 (2015) 805-814.

Q. Xu, L. Guo, N. Wang, Y. He, Coobbo: a novel opposition-based soft computing
algorithm for tsp problems, Algorithms 7 (4) (2014) 663—-684.

Q. Xu, L. Guo, N. Wang, J. Pan, L. Wang, A novel oppositional biogeography-
based optimization for combinatorial problems, ICNC (2014) 412-418.

Q. Xu, L. Wang, B. He, N. Wang, Modified opposition-based differential evolution
for function optimization, J. Comput. Inf. Syst. 7 (5) (2011) 1582-1591.

Q. Xu, L. Wang, N. Wang, X. Hei, L. Zhao, A review of opposition-based learning
from 2005 to 2012, Eng. Appl. Artif. Intell. 29 (2014) 1-12.

M. Yaghini, M.M. Khoshraftar, M. Fallahi, Hiopga: a new hybrid metaheuristic
algorithm to train feedforward neural networks for prediction, in Proceedings of
the International Conference on Data Mining, pages 18-21, 2011.

M. Yaghini, M.M. Khoshraftar, M. Fallahi, A hybrid algorithm for artificial neural
network training, Eng. Appl. Artif. Intell. 26 (1) (2013) 293-301.

C. Yang, J.-K. Zhang, L.-X. Guo, Investigation on the inversion of the atmospheric
duct using the artificial bee colony algorithm based on opposition-based learning.
G.-P. Yang, S.-Y. Liu, J.-K. Zhang, Q.-X. Feng, Control and synchronization of
chaotic systems by an improved biogeography-based optimization algorithm,
Appl. Intell. 39 (1) (2013) 132-143.

L. Yang, S. Xijia, C. Deng, Opposition-based learning particle swarm optimization
of running gait for humanoid robot, Int. J. Smart Sens. Intell. Syst. 8 (2) (2015).
L. Yang, L. Zhou, A novel bp neural network for forecasting agriculture water
consumption, in 2011 International Conference on Graphic and Image
Processing, pages 828579-828579. International Society for Optics and Photonics,
2011.

X. Yang, J. Cao, K. Li, P. Li, Improved opposition-based biogeography optimiza-
tion. in Advanced Computational Intelligence (IWACI), 2011 Fourth International
Workshop on, pages 642-647. IEEE, 2011.

23

[367]

[368]

[369]
[370]
[371]

[372]

[373]

[374]

[375]

[376]

[377]

[378]

[379]

[380]

[381]

[382]

[383]

[384]

[385]

[386]

Swarm and Evolutionary Computation xxx (Xxxx) Xxx—xxx

Y. Yang, Z. Cui, J. Wu, G. Zhang, X. Xian, Fuzzy c-means clustering and
opposition-based reinforcement learning for traffic congestion identification, J.
Inf. Comput. Sci. 9 (2012) 2441-2450.

S. Yazdani, J. Shanbehzadeh, Balanced cartesian genetic programming via
migration and opposition-based learning: application to symbolic regression,
Genet. Program. Evol. Mach. 16 (2) (2015) 133-150.

X. Youa, F. Haoc, Y. Maa, A hybrid differential evolution algorithm solving
complex multimodal optimization problems?.

S. Yu, S. Zhu, Y. Ma, D. Mao, Enhancing firefly algorithm using generalized
opposition-based learning, Computing 97 (7) (2015) 741-754.

Q. Yuan, G. Dai, The improved nsga-ii based on reverse learning mechanism.
2015.

U. Yiizgeg, Performance comparison of differential evolution techniques on
optimization of feeding profile for an industrial scale baker's yeast fermentation
process, ISA Trans. 49 (1) (2010) 167-176.

Q. Zhai, D. Yuan, H. Zhang, K. Gao, Parallelization of obl based pso k-means
algorithm using opencl architecture, in Natural Computation (ICNC), 2014 10th
International Conference on, pages 714-719. IEEE, 2014.

C. Zhang, Z. Ni, Z. Wu, L. Gu, A novel swarm model with quasi-oppositional
particle, in Information Technology and Applications, 2009. IFITA'09.
International Forum on, volume 1, pp. 325-330. IEEE, 2009.

X. Zhang, S.Y. Yuen, Opposition-based adaptive differential evolution, in
Evolutionary Computation (CEC), 2012 IEEE Congress on, pp. 1-8. IEEE, 2012.
F. Zhao, J. Zhang, J. Wang, C. Zhang, A shuffled complex evolution algorithm with
opposition-based learning for a permutation flow shop scheduling problem, Int. J.
Comput. Integr. Manuf. 28 (11) (2015) 1220-1235.

L. Zhao, Q. Xu, J. Pan, Influence of jumping rate on opposition-based differential
evolution using the current optimum, Inf. Technol. J. 12 (5) (2013) 959.

P. Zhao, H. Li, Opposition-based cuckoo search algorithm for optimization
problems, in Computational Intelligence and Design (ISCID), 2012 Fifth
International Symposium on, volume 1, pages 344-347. IEEE, 2012.

P.-J. Zhao, A hybrid harmony search algorithm for numerical optimization, in
Computational Aspects of Social Networks (CASoN), 2010 International
Conference on, pages 255-258. IEEE, 2010.

X. Zhao, B. Yang, S. Gao, Y. Chen, Multi-contour registration based on feature
points correspondence and two-stage gene expression programming,
Neurocomputing 145 (2014) 512-529.

Y. ZHONG, J. LIN, X. LIN, H. YANG, An improved particle swarm optimization
algorithm for protein structure prediction based on ab model, J. Theor. Appl. Inf.
Technol. 51 (1) (2013).

J. Zhou, W. Fang, X. Wu, J. Sun, S. Cheng, An opposition-based learning
competitive particle swarm optimizer, in Evolutionary Computation (CEC), 2016
IEEE Congress on, pp. 515-521. IEEE, 2016.

J.ZHOU, H. WANG, W. SU, An opposition effective gsa based memetic algorithm
for permutation flow shop scheduling.

X. Zhou, Z. Wu, C. Deng, H. Peng, Enhancing artificial bee colony algorithm with
generalised opposition-based learning, Int. J. Comput. Sci. Math. 6 (3) (2015)
297-309.

X. Zhou, Z. Wu, H. Wang, Elite opposition-based differential evolution for solving
large-scale optimization problems and its implementation on gpu, in Parallel and
Distributed Computing, Applications and Technologies (PDCAT), 2012
Proceedings of the 13th International Conference on, pages 727-732. IEEE, 2012.
X. Zhou, Z. Wu, H. Wang, S. Rahnamayan, Gaussian bare-bones artificial bee
colony algorithm, Soft Comput. (2014) 1-18.


http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref161
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref161
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref161
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref162
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref162
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref162
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref163
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref163
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref163
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref164
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref164
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref165
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref165
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref166
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref166
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref167
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref167
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref168
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref168
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref169
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref169
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref169
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref170
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref170
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref171
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref171
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref171
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref172
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref172
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref172
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref173
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref173
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref174
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref174
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref174
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref175
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref175
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref175
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref176
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref176
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref177
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref177
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref177
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref178
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref178
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref178
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref179
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref179
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref179
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref180
http://refhub.elsevier.com/S2210-6502(16)30433-3/sbref180

	Opposition based learning: A literature review
	Introduction
	Opposition-based learning: basic concepts and pioneering research works
	Basic concepts
	Pioneering research works

	Theoretical research works on opposition schemes
	EA-related research works
	Theorems related to OBL
	Quasi appositions and their corresponding theorems
	Schemes for binary search space and their corresponding theorems
	Comprehensive opposition and its corresponding theorems
	Other OBL schemes
	Center-based sampling

	Theoretical research works on RL
	Theoretical research works on ANN

	Developmental research works
	Optimization methods
	Evolutionary computation
	Swarm intelligence

	Artificial neural networks (ANN)
	Reinforcement learning (RL)
	Fuzzy systems

	Contributions of OBL in application domains
	Conclusion remarks and future directions
	References




