
Opposition-Based Differential Evolution
for Optimization of Noisy Problems

Shahryar Rahnamayan, Hamid R. Tizhoosh, Magdy M.A. Salama, Fellow, IEEE

Abstract— Differential Evolution (DE) is a simple, reliable,
and efficient optimization algorithm. However, it suffers from
a weakness, losing the efficiency over optimization of noisy
problems. In many real-world optimization problems we are
faced with noisy environments. This paper presents a new
algorithm to improve the efficiency of DE to cope with noisy
optimization problems. It employs opposition-based learning
for population initialization, generation jumping, and also
improving population’s best member. A set of commonly used
benchmark functions is employed for experimental verification.
The details of proposed algorithm and also conducted experi-
ments are given. The new algorithm outperforms DE in terms
of convergence speed.

I. INTRODUCTION

D Ifferential Evolution (DE) is a simple, reliable, and
efficient optimization algorithm. However, it suffers

from dramatic degradation of the efficiency over optimization
of noisy problems. Dealing with noisy fitness functions in
evolutionary algorithms has been addressed by some authors
in this field, such as evolutionary programming (EP) [1], ge-
netic algorithm (GA) [2], particle swarm optimization (PSO)
[3], and differential evolution (DE) [4]. Re-sampling and
thresholding are well-known methods to overcome the noisy
fitness evaluation [5], [6]. Re-sampling suggests evaluating
of the same candidate solution for N times and approxi-
mating of the true fitness value by averaging. N should be
determined properly to achieve a reasonable tradeoff between
accurate evaluation of fitness value and computation cost.
Thresholding method is applied on selection step. According
to this method, a parent can only be replaced by an offspring
if fitness value of offspring is larger than a threshold value
τ . The main problem with this method is finding an optimal
static value or modified adaptation rule for τ .

This paper presents a new opposition-based differential
evolution (ODE) algorithm. It improves the efficiency of the
conventional DE over optimization of noisy problems by
applying opposition-based learning [7]. The main idea behind
the opposition-based learning is considering the estimate and
opposite estimate (guess and opposite guess) at the same
time in order to achieve a better approximation for current
candidate solution. It can be useful for noisy environments
when the optimal solution is displaced by the noise. In fact,
opposite estimate (looking at the opposite side) gives us a
second chance to sense the displacement of optimal solutions.

Pattern Analysis and Machine Intelligence (PAMI) Research Group,
Faculty of Engineering, University of Waterloo, 200 University Avenue
West, Waterloo, Ontario, N2L 3G1, Canada (phone: 1-(519)-888-4567
ext. 6751, fax: 1-(519)-746-4791, emails: shahryar@pami.uwaterloo.ca;
tizhoosh@uwaterloo.ca; msalama@hivolt1.uwaterloo.ca).

By this way, we obtain a dynamic behavior to follow optimal
solution in the noisy environment. The idea is applicable
to a wide range of optimization methods. Although the
proposed idea is embedded in the DE, but is general enough
to be applied to many other population-based algorithms. As
another outstanding feature, the ODE can be used to optimize
noise-free and also noisy functions without any changes.
Many other reported algorithms are designed specifically
for optimization of noisy problems, and classical DE can
outperform them when they are been applying to noise-free
functions. For instance, Das et al. [4] showed that Differential
Evolution with Random Scale Factor (DE-RSF-TS) and DE-
RSF with Stochastic Selection (DE-RSF-SS) perform worse
than DE for noise-free functions.

Organization of this paper is as follows: In section II,
the concept of opposition-based learning is explained. The
classical DE is briefly reviewed in section III. The proposed
algorithm is presented in section IV. Experimental results are
given in section V. Finally, the work is concluded in section
VI.

II. OPPOSITION-BASED LEARNING

Generally speaking, evolutionary optimization methods
start with some initial solutions (initial population) and try
to improve performance toward some optimal solutions. The
process of searching terminates when predefined criteria
are satisfied. In absence of a priori information about the
solution, we start with a random guess. Obviously, the
computation time is directly related to distance of the guess
from optimal solution. We can improve our chance to start
with a closer (fitter) solution by checking the opposite
solution simultaneously. By doing this, the closer one to
solution (say guess or opposite guess) can be chosen as
initial solution. In fact, according to probability theory,
in 50% of cases the guess is farther to solution than
opposite guess; for these cases starting with opposite guess
can accelerate convergence. The same approach can be
applied not only to initial solutions but also continuously
to each solution in the current population. The concept
of opposition-based learning was introduced by Tizhoosh
[7] and its applications were introduced in [7]–[9]. Before
concentrating on opposition-based learning, we need to
define opposite numbers [7]:

Definition - Let x be a real number in an interval [a, b]
(x ∈ [a, b]); the opposite number x̆ is defined by

x̆ = a + b− x. (1)

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1865

Similarly, this definition can be extended to higher
dimensions as follows [7]:

Definition - Let P (x1, x2, ..., xn) be a point in n-
dimensional space, where x1, x2, ..., xn ∈ R and xi ∈ [ai, bi]
∀i ∈ {1, 2, ..., n}. The opposite point of P is defined by
P̆ (x̆1, x̆2, ..., x̆n) where:

x̆i = ai + bi − xi. (2)

Now, by employing opposite point definition, the
opposition-based optimization can be defined as follows:

Opposition-Based Optimization - Let P (x1, x2, ..., xn),
a point in an n-dimensional space with xi ∈ [ai, bi]
∀i ∈ {1, 2, ..., n}, be a candidate solution. Assume
f(x) is a fitness function which is used to measure
candidate optimality. According to opposite point definition,
P̆ (x̆1, x̆2, ..., x̆n) is the opposite of P (x1, x2, ..., xn). Now,
if f(P̆) ≥ f(P), then point P can be replaced with P̆ ;
otherwise we continue with P . Hence, the point and its
opposite point are evaluated simultaneously to continue with
the fitter one.

Before introducing the new opposition-based DE algo-
rithm, the classical DE is briefly reviewed in the following
section.

III. THE CLASSICAL DE

Differential Evolution (DE) is a population-based, effi-
cient, robust, and direct search method [10]. Like other
evolutionary algorithms, it starts with an initial popula-
tion vector, which is randomly generated. Let assume that
Xi,G, (i = 1, 2, ..., n) are n Nv-dimensional parameter
vectors of generation G (n is a constant number which
presents the population size) [11]. In order to generate a new
population of vectors, for each target vector in population
three vectors are randomly selected, and weighted difference
of two of them is added to the third one.

For classical DE, the procedure is as follows [11]:

(a) Creating difference-offspring: For each vector i from
generation G a mutant vector Vi,G is defined by

Vi,G = Xr1,G + F (Xr2,G −Xr3,G), (3)

where i = {1, 2, ..., n} and r1, r2, and r3 are mutually
different random integer indices selected from {1, 2, ..., n}.
Further, i, r1, r2, and r3 are different so n ≥ 4. F ∈ [0, 2] is
a real constant which determines amplification of the added
differential variation of (Xr2,G −Xr3,G). Larger values for
F result in higher diversity in the generated population and
the lower values in faster convergence.

DE utilizes crossover operation to increase diversity of the
population. It defines following trial vector:

Ui,G = (U1i,G, U2i,G, ..., UNvi,G), (4)

where j = 1, 2, .., Nv and

Uji,G =
{

Vji,G if randj(0, 1) ≤ Cr,
Xji,G otherwise.

(5)

Cr ∈ (0, 1) is predefined crossover constant
randj(0, 1) ∈ [0, 1] is jth evaluation of uniform random
generator. Most popular value for Cr is in the range of
(0.4, 1) [4].

(b) Fitness evaluating of trial vector.

(c) Selection: The approach must decide which vector
(Ui,G or Xi,G) should be a member of new generation,
G + 1. Vector with the fitter value is chosen.

There are other variants of DE [12] but to maintain a
general comparison, the classical version of DE has been
selected to compare with the proposed algorithm in all
conducted experiments.

IV. PROPOSED ALGORITHM

In this section, the concept of opposition-based opti-
mization is embedded in the DE to accelerate convergence
speed and also to enhance its capability for handling noisy
optimization problems. After population initialization, DE
algorithm remains inside a loop and continues to produce
new generations and stops if termination criterion is satisfied.
Population initialization, producing the new generations, and
improving the best individual in the current population are
three target stages which are extended by opposition-based
concept. Flowchart of opposition-base differential evolution
(ODE) algorithm is given in Fig. 1 and the corresponding
algorithm is presented using a pseudo-code in Table I.

Fig. 1. Opposition-based DE (ODE). New/extended blocks are illustrated
by black boxes.

Newly added or changed blocks in the DE are emphasized
by black boxes and are explained in details as follows:

1866

Administrator
Highlight

TABLE I

OPPOSITION-BASED DE (ODE). NEW/EXTENDED BLOCKS ARE HIGHLIGHTED IN BOLDFACE.

Begin
n = population size;
k = {1, 2, ..., n}; /* index of individuals in the population */
j = {1, 2, ..., Nv}; /* index of variables in the individual */
xj ∈ [aj , bj]; /* interval boundaries of variable j */
xp

j ∈ [ap
j , bp

j]; /* interval boundaries of variable j in the current population */
MAXNFC = maximum number of function calls (NFC);
VTR = value to reach;
Jr = jumping rate;

/* (1) Opposition-Based Population Initialization */
for k = 0 to n

Generating Uniformly Distributed Random Individual, Pk,j ;
Calculating Corresponding Opposite Individual by OPk,j = aj + bj − Pk,j ;

for end
Calculating Fitness Value of each Individual in P(n) and OP(n);
Selecting n Fittest Individuals from {P (n), OP (n)} as Initial Population;
/* End of (1) Opposition-Based Population Initialization */

while (Best Fitness V alue so far > VTR and NFC < MAXNFC)
if (rand (0,1) < Jr) /* (2a) */

/* (2b) Opposition-Based Generation Jumping */
for k = 0 to n

Calculating Opposite Individual in Current Population by OPk,j = ap
j + bp

j − Pk,j ;
for end

Calculating Fitness Value of each Individual in OP (n);
Selecting n Fittest Individuals from {OP (n), Current Population} as a new Current Population;
/* End of (2b) Opposition-Based Generation Jumping */

else
/* DE Evolution Steps */
for k = 0 to n

Creating Difference-Offspring of each Parent (Individual);
Calculating Fitness Value of above Offspring;
Selecting the Best from {Parent,Offspring};

for end
/* End of DE Evolution Steps */

if end
/* (3) Best Individual Jumping */

Calculating Difference-Offspring of the Best Individual (best), newbest;
Calculating Opposite of new best by op newbest = ap

j + bp
j − newbest;

Replacing the current population’s best member by the fittest member of the set {best,newbest,op newbest};
/* End of (3) Best Individual Jumping */

while end
End

(1) Opposition-Based Population Initialization

According to our review of optimization literature, in most
cases, random number generation is the only choice to
create initial population. But as mentioned in section II,
concept of opposition-based optimization can help us to
obtain fitter starting candidate solutions even when there is no
a priori knowledge about solutions. We propose the following
scheme:

(1) Generating uniformly distributed random
population, P (n); n is the population size,

(2) Calculating opposite population OP (n); the kth

corresponding opposite individual for OP (n) is
calculated by:

OPk,j = aj + bj − Pk,j , (6)

k = 1, 2, ..., n; j = 1, 2, ..., Nv,

where Nv is the number of variables (problem
dimension); aj and bj denote the interval
boundaries of jth variable (xj ∈ [aj , bj]),

(3) Selecting n fittest individuals from set the
{P (n), OP (n)} as initial population.

(see block (1) in Fig. 1 and also Opposition-Based
Population Initialization boldface block in Table I)

(2) Opposition-Based Generation Jumping

Based on a jumping rate Jr, instead of generating new
population by evolutionary process, the opposite population
is calculated and the n fittest individuals are selected from
the current population and the corresponding opposite
population (exactly similar to what was performed for
opposition-based population initialization). Blocks (2a)
and (2b) in Fig. 1 and also Opposition-Based Generation
Jumping boldface block in Table I present more details. Our
comprehensive experiments show that Jr should be a small
number (Jr∈ (0, 0.4)).

Dynamic Opposition: It should be noted here that in order

1867

to calculate the opposite individuals for generation jumping
and also for the best individual jumping (step (3)), the oppo-
site of each variable is calculated dynamically. It means, the
maximum and minimum values of each variable in current
population ([ap

j , b
p
j]) are used to calculate opposite point

instead of using variables’ predefined interval boundaries
([aj , bj]):

OPk,j = ap
j + bp

j − Pk,j , (7)

k = 1, 2, ..., n; j = 1, 2, ..., Nv.

This dynamic behavior of the opposite point calculation
increases our chance to find fitter opposite points. By
keeping variables’ interval static boundaries, we will jump
outside of solution space and the knowledge of current
reduced space (converged population) is not utilized to find
better opposite candidate.

(3) Best Individual Jumping

In this stage, we locally improve the best candidate (the
fittest member) in the current population by applying follow-
ing steps:

(3.d) Creating difference-offspring of the best individual
in the current population by:

newbest = best + F ′(Xr1 −Xr2), (8)

where r1 and r2 are mutually different random
integer indices selected from {1, 2, ..., n}. F ′ is
a real constant which determines amplification of
the added differential variation of (Xr1 − Xr2).
F ′ should be set to a small number (F ′ ∈ (0, 0.2])
because we need a small/local exploration to
improve the current best member. In contrast,
a large value for F ′ can reduced our chance to
obtain a better candidate.

(3.e) Calculating opposite of offspring created in (3d)
by employing Eq. 7, call op newbest,

(3.f) Replacing the current best member by the fittest
member of the set {best, newbest, op newbest}.

(see block (3) in Fig. 1 and also Best Individual Jumping
boldface block in Table I)

By embedding opposition-based optimization concept in
the mentioned three blocks, the convergence speed and the
capability of handling noisy optimization problems will be
remarkably increased. This is demonstrated in the following
section.

V. EXPERIMENTS

A. Control Parameter Settings

The parameter settings are listed as follows. All common
parameters of the DE and ODE are set as the same to have
a fair competition. For both DE and ODE we set

• Population size, n = 100
• Differential amplification factor, F=0.5
• Crossover probability constant, Cr=0.9
• Strategy [12], DE/rand/1/bin
• Maximum function calls, MAXNFC=105.

For ODE we set

• Jumping rate constant, Jr=0.3
• Differential amplification factor, F′=0.1.

B. Benchmark Functions

Following functions are well-known benchmark functions
for minimization [4], [6], [13]. The noisy version of each
benchmark function, is defined as:

fn(~x) = f(~x) + N(0, σ2),

where f(~x) is the noise-free function; fn(~x) is the
corresponding noisy function; and N(0, σ2) is normal, zero
maen distribution with and deviation σ. For all benchmark
functions the minima are at the origin or very close to the
origin. Except for f5 (Levy No. 5 function), its minima is
at ~̇x = [−1.3068, 1.4248] with f(~̇x) = −176.1375.

• Sphere (50D)

f1(x) =
D∑

i=1

xi
2, with− 100 ≤ xi ≤ 100

• Rosenbrock (50D)

f2(x) =
D∑

i=1

[100(xi+1 − x2
i)

2 + (1− xi)2],

with− 50 ≤ xi ≤ 50

• Rastrigin (50D)

f3(x) =
D∑

i=1

[x2
i − 10 cos(2πxi) + 10],

with− 5.12 ≤ xi ≤ 5.12

• Griewangk (50D)

f4(x) =
D∑

i=1

x2
i

4000
−

D∏
i=1

cos(
xi√

i
) + 1,

with− 600 ≤ xi ≤ 600

• Levy No. 5 (2D)

f5(x) =
5∑

i=1

i cos[(i + 1)x1 + i]×

5∑
j=1

j cos[(j + 1)x2 + j]

+(x1 + 1.42513)2 + (x1 + 0.80032)2,
with− 10 ≤ xi ≤ 10

1868

• Beale (2D)

f6(x) = [1.5− x1(1− x2)]2 + [2.25− x1(1− x2
2)]

2

+[2.625− x1(1− x3
2)]

2,

with− 10 ≤ xi ≤ 10

• Ackley (50D)

f7(x) = −20e−0.2

√
D∑

i=1
x2

i

D − e

D∑
i=1

cos(2πxi)

D + 20 + e,

with− 32 ≤ xi ≤ 32

• Schaffer’s f6 (2D)

f8(x) = 0.5− (sin
√

x2 + y2)2 − 0.5
(1.0 + 0.001(x2 + y2))2

,

with− 100 ≤ xi ≤ 100

• De Jong’s f4 with noise (50D)

f9(x) =
D∑

i=1

ixi
4 + rand(0, 1),

with− 1.28 ≤ xi ≤ 1.28

C. Simulation Strategy

Like other studies in the evolutionary optimization field
[4], [6], [17], for all conducted experiments, trials are re-
peated 50 times per function per noise deviation. Each run
is continued up to 105 function calls and then mean and
standard deviation of the best fitness values are reported.
Re-sampling and thresholding techniques [5] are not applied
in this paper.

In the last part of the conducted experiments, there is
another contest to compare convergence speed and robust-
ness of DE and ODE, settings and strategy for mentioned
experiment are explained later.

D. Simulation Results

Numerical results are summarized in Tables II. These
Tables show the results, mean ± (standard deviation), for
each specified noise standard deviation (σ2), 0 (noise-free),
0.25, 0.50, 0.75, and 1, respectively. The best result for each
case is highlighted in boldface.

Performance comparison between DE and ODE is vi-
sualized in Fig. 2. Best fitness-value-so-far vs. number-of-
function-calls is plotted for all benchmark functions. Again
experiments have been repeated 50 times to plot average
values. Because of space limitation, the plots only for noise
deviation of σ2 = 0.5 are given.

Furthermore, by using the numerical results summarized
in Tables II, the plots of optimal-solution vs. noise-deviation
(σ2 ∈ {0, 0.25, 0.50, 0.75, 1}) for all benchmark functions
are shown in Fig. 3.

In the second part of the conducted experiments, as we
mentioned before, we compare the convergence speed and
robustness of DE and ODE. The number of function calls
(NFC) and the success rate (SR) are the meaningful metrics
which are commonly used in the literature. By 50 times

TABLE II

MEAN ± (STANDARD DEVIATION) OF THE BEST FITNESS VALUE, FOR

EACH SPECIFIED NOISE STANDARD DEVIATION (σ2), 0 (NOISE-FREE),

0.25, 0.50, 0.75, AND 1, (TOP TO BOTTOM) RESPECTIVELY. THE BEST

RESULT FOR EACH CASE IS HIGHLIGHTED IN BOLDFACE.

σ2 = 0.0
Function DE ODE
f1(50D) 0.003± (0.001) 0.000± (0.000)
f2(50D) 74.443± (45.372) 52.079± (24.807)
f3(50D) 371.338± (17.212) 142.933± (78.526)
f4(50D) 0.004± (0.002) 0.001± (0.003)
f5(2D) −176.138± (0.000) −176.138± (0.000)
f6(2D) 0.000± (0.000) 0.000± (0.000)
f7(50D) 0.014± (0.004) 0.000± (0.000)
f8(2D) 0.000± (0.000) 0.000± (0.000)
f9(50D) 0.000± (0.000) 0.000± (0.000)

σ2 = 0.25
f1(50D) 0.520± (0.100) 0.417± (0.107)
f2(50D) 77.930± (49.683) 57.325± (27.978)
f3(50D) 373.788± (15.616) 149.580± (70.987)
f4(50D) 1.428± (0.106) 1.399± (0.111)
f5(2D) -176.108± (0.025) −176.113± (0.024)
f6(2D) 0.033± (0.032) 0.023± (0.020)
f7(50D) 1.944± (0.345) 0.994± (0.243)
f8(2D) 0.485± (0.076) 0.492± (0.054)
f9(50D) 0.201± (0.078) 0.153± (0.074)

σ2 = 0.5
f1(50D) 0.938± (0.201) 0.874± (0.173)
f2(50D) 81.257± (52.682) 56.376± (24.826)
f3(50D) 373.966± (17.133) 126.863± (61.624)
f4(50D) 1.895± (0.188) 1.844± (0.209)
f5(2D) −176.086± (0.067) -176.078± (0.058)
f6(2D) 0.078± (0.075) 0.061± (0.049)
f7(50D) 21.180± (1.488) 10.607± (8.679)
f8(2D) 0.501± (0.001) 0.500± (0.000)
f9(50D) 0.462± (0.214) 0.330± (0.157)

σ2 = 0.75
f1(50D) 1.496± (0.358) 1.227± (0.340)
f2(50D) 77.029± (50.721) 57.045± (26.143)
f3(50D) 374.726± (15.447) 139.681± (71.997)
f4(50D) 2.332± (0.358) 2.185± (0.317)
f5(2D) -176.045± (0.094) −176.048± (0.078)
f6(2D) 0.098± (0.112) 0.107± (0.161)
f7(50D) 21.602± (0.224) 17.884± (6.548)
f8(2D) 0.500± (0.000) 0.499± (0.006)
f9(50D) 0.616± (0.226) 0.438± (0.202)

σ2 = 1
f1(50D) 1.830± (0.372) 1.729± (0.484)
f2(50D) 76.651± (44.276) 62.054± (33.126)
f3(50D) 372.181± (15.154) 156.033± (66.979)
f4(50D) 2.717± (0.378) 2.629± (0.436)
f5(2D) −176.030± (0.118) -176.012± (0.117)
f6(2D) 0.165± (0.163) 0.133± (0.152)
f7(50D) 21.617± (0.229) 20.798± (3.102)
f8(2D) 0.500± (0.000) 0.496± (0.0203)
f9(50D) 0.890± (0.356) 0.718± (0.338)

1869

run, each time the DE and ODE try to reduce the function
value below of VTR=0.01 (−176.3 for f5) before meeting
maximum number of function calls which is 3× 105 for f3,
2× 105 for f2 and f7, and 105 for others. Number of times
(out of 50), for which the algorithm (DE or ODE) succeeds
to touch the VTR (value to reach) is measured as the success
rate. Numerical results are summarized in Table III.

TABLE III

COMPARISON OF CONVERGENCE SPEED (NFC) AND SUCCESS RATES.

AR: ACCELERATION RATE (ACCELERATED BY ODE), SR: SUCCESS

RATE.

Function DE ODE AR
f1(50D) 93628, 49 53842, 50 42%
f2(10D) 61522, 50 105800, 41 −72%
f3(10D) 323852, 36 79304, 46 76%
f4(50D) 94150, 49 56411, 50 40%
f5(2D) 4394, 50 4158, 50 5%
f6(2D) 1392, 50 1133, 50 19%
f7(50D) 104040, 50 62526, 50 40%
f8(2D) 4154, 50 3667, 50 12%
f9(50D) 38040, 50 13058, 50 66%
9∑

i=1
NFCi = 725172 379899 → (47.6%)

Overall SR of DE= 48.2 (out of 50)
Overall SR of ODE= 48.6 (out of 50)

E. Results Analysis

For σ2 = 0 (noise-free functions, Table II) DE and
ODE have the same behavior for f5(Levy No. 5), f6(Beale),
f8(Schaffer’s f6), and f9(De Jong’s f4) but over other 5
benchmark functions ODE outperforms DE.

For σ2 = 0.25 f6(Beale) and f9(De Jong’s f4) are joined
to those 5 functions and ODE surpasses DE over these 7
benchmark functions. When the noise derivation reaches to
0.5 or 1 for all 9 functions ODE performs absolutely better
than DE.

For σ2 = 0.75, DE outperforms ODE on functions
f5(Levy No. 5) and f6(Beale); but for other 7 functions ODE
surpasses the DE. As a conclusion, for noise-free functions
they perform the same or the ODE (for 5 cases) outperforms
DE.

For other noisy cases ODE at least over 7 benchmark
functions (out of 9) performs better than DE. It means the
ODE is generally doing better for noise-free and also noisy
functions than the DE.

By increasing the noise deviation, optimal solutions of
both DE and ODE worsen (most of time linearly and
with the almost the same slope), see Fig. 3. Interestingly,
both f2(Rosenbrock) and f3(Rastrigin) functions show stable
behavior against the noise variation (Fig. 3.b and 3.c).

The ODE outperforms DE over 8 benchmark functions on
the basis of the convergence speed (number of function calls),
see Table III. The acceleration rate (improvement) is 47.6%
in overall. The robustness (success rate here) is almost the
same for both in overall.

VI. CONCLUDING REMARKS

The conventional DE was enhanced by utilizing
opposition-based optimization concept in three levels,
namely, population initialization, generation jumping, and
local improvement of the population’s best member. Our
limited experiments confirmed that the proposed opposition-
based differential evolution (ODE) algorithm performs better
than the DE in terms of convergence speed over noisy and
noise-free functions. Experiments with much comprehensive
and complex test set is required to conclude strongly. Un-
like other approaches in this field which are noise-oriented
algorithms and perform worse for noise-free functions, the
proposed ODE has a consistent performance for both noise-
free and noisy cases.

In our algorithm and in all mentioned three levels, the
opposite estimation (looking at the opposite side) introduces
a second chance to improve our candidate solutions and also
to support a dynamic behavior to follow up the optimal
solution in the noisy environments.

The main drawback is that the ODE has introduced two
more control parameters (Jr and F′). According to our
experiences, achieved by testing ODE with other benchmark
functions (not reported in this paper), setting Jr ≈ 0.3 and
F′ ≈ 0.1 can provide satisfactory results in general. Further
study is required to suggest more reliable empirical values.

Acknowledgement- The authors would like to thank Erik
Jonasson (visiting scholar at the University of Waterloo,
Canada) for conducting comprehensive experiments.

REFERENCES

[1] L.J. Fooel, A.J. Owens, M.J. Walsh, Artificial Intelligence through
Simulnted Evolution, John Wiley & Sons, New York, 1966.

[2] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, New York: Addison-Wesley, 1989.

[3] J. Kennedyj and R.C. Eberhartr, Particle Swarm Optimization,
Proceedings of the I995 IEEE International Conference on Neural
Network (Perth, Australia, IEEE Service Center, Piscataway, NI),
Vol. 4, pp. 1942-1948, 1995.

[4] S. Das, A. Konar, Uday K. Chakraborty, Improved Differential
Evolution Algorithms for Handling Noisy Optimization Problems,
Proceedings of IEEE Congress on Evolutionary Computation,
CEC2005, Vol. 2, pp. 1691-1698, 2005.

[5] Yaochu Jin and Jürgen Branke, Evolutionary Optimization in
Uncertain Environments- A Survey, IEEE Transactions on
Evolutionary Computatioon, Vol. 9, No. 3, pp. 303-317, June
2005.

[6] T. Krink, B. Filipič, Gary B. Fogel, Noisy optimization problems -
A Particular Challenge for Differential Evolution?, Proceedings of
the 2004 Congress on Evolutionary Computation, CEC2004, Vol. 1,
pp. 332-339, 2004.

[7] H.R. Tizhoosh, Opposition-Based Learning: A New Scheme for
Machine Intelligence, Int. Conf. on Computational Intelligence for
Modelling Control and Automation - CIMCA’2005, Vol. I, pp.
695-701, Vienna, Austria, 2005.

1870

(a) f1(50D), Sphere Function (b) f2(50D), Rosenbrock Function (c) f3(50D), Rastrigin Function

(d) f4(50D), Griewangk Function (e) f5(2D), Levy No. 5 Function (f) f6(2D), Beale Function

(g) f7(50D), Ackley Function (h) f8(2D), Schaffer’s f6 Function (i) f9(50D), De Jong’s f4 Function with
noise

Fig. 2. Performance comparison between DE and ODE. Best-fitness value-so-far vs. number-of-function-calls (NFC) is plotted for 9 benchmark functions
(noise deviation: σ2 = 0.5). Experiments have been repeated 50 times to plot by average values.

[8] H.R. Tizhoosh, Reinforcement Learning Based on Actions and
Opposite Actions. ICGST International Conference on Artificial
Intelligence and Machine Learning (AIML-05), Cairo, Egypt, 2005.

[9] H.R. Tizhoosh, Opposition-Based Reinforcement Learning, Journal
of Advanced Computational Intelligence and Intelligent Informatics,
Vol. 10, No. 3, 2006.

[10] K. Price, An Introduction to Differential Evolution, In: D. Corne, M.
Dorigo, F. Glover (eds) New Ideas in Optimization, NcGraw-Hill,
London (UK), pp. 79-108, 1999, ISBN:007-709506-5.

[11] Godfrey C. Onwubolu and B.V. Babu, New Optimization Techniques
in Engineering, Berlin ; New York : Springer, 2004.

[12] R. Storn and K. Price, Differential Evolution- A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces, Journal
of Global OPtimization 11, pp. 341-359, 1997.

[13] X. Yao, Y. Liu, G. Lin, Evolutionary Programming Made Faster,
IEEE Transactions on Evolutionary Computatioon, Vol. 3, No. 2,

pp. 82-102, 1999.

[14] Thomas Back, Evolutionary Algorithms in Theory and Practice
: Evolution Strategies, Evolutionary Programming, Genetic
Algorithms, Oxford University Press, USA, 1996, ISBN:
0195099710.

[15] A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
(Natural Computing Series), Springer; 1st Edition, 2003, ISBN:
3540401849.

[16] K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution : A
Practical Approach to Global Optimization (Natural Computing
Series) Springer; 1st Edition, 2005, ISBN: 3540209506.

[17] J. Vesterstrøm and R. Thomsen, A Comparative Study of Differ-
ential Evolution, Particle Swarm Optimization, and Evolutionary
Algorithms on Numerical Benchmark Problems. Proceedings of the
Congress on Evolutionary Computation (CEC’04), IEEE Publica-
tions, Vol. 2, pp. 1980-1987, 2004.

1871

(a) f1(50D), Sphere (b) f2(50D), Rosenbrock Function

(c) f3(50D), Rastrigin Function (d) f4(50D), Griewangk Function

(e) f5(2D), Levy No. 5 Function (f) f6(2D), Beale Function

(g) f7(50D), Ackley Function (h) f8(2D), Schaffer’s f6 Function

(i) f9(50D), De Jong’s f4 Function with noise

Fig. 3. Plot of optimal-solution vs. noise-deviation (σ2 ∈ {0, 0.25, 0.5, 0.75, 1}) for corresponding 9 benchmark functions.
1872

