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Abstract—Vibration control of flexible structures has always
been one of the most important issues and Among variant
available control methods, active vibration control using piezo-
electric sensors and actuators has become popular due to its
high efficiency and flexibility for designing a control system. The
main concern in designing a control system with piezoelectric
patches is finding best position for patches. On the other hand,
number of used sensors and actuators is another important
issue which affects the costs of the project as well as the
performance. The main goal of the present study is to control
oscillation of a rectangular plate using minimum number of
piezoelectric sensors and actuators (i.e., objective one) and
finding their optimum placement to get the maximum possible
performance (i.e., objective two); the mentioned two objectives
are in conflict. The plate have been mathematically modeled
using the Kirchhoff-Love theory. By considering the piezoelectric
sensor-actuators effects, the control equation of the cantilever
plate has been obtained. In order to find the optimum number
and placement of the sensors and actuators, the multi-objective
genetic algorithm (GA) has been used and the objective functions
have been defined based on maximization of observability and
countability indexes of the cantilever plate. After conducting the
optimization process, a few thumb rules have been extracted
using the innovization technique. The results have been verified
by implementing the designed controller using the optimum
solution found by optimization method. The importance of the
rules found by innovization technique have been illustrated in
the numerical discussion.

Index Terms—Vibration Control, Kirchhoff-Love Plate, Fuzzy
Logic Controller, Multi-objective Optimization, Genetic Algo-
rithm, Evolutionary Computation, Innovization.

I. INTRODUCTION

During the recent years, many researchers have focused on
finding optimum solutions to control vibration of the flexible
structures. Among various available vibration control methods,
active vibration control using sensors and actuators has at-
tracted attention due to its high efficiency for controlling vibra-
tion of flexible structures. Recent developments in piezoelec-
tric materials and their applications such as distributed sensors
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and actuators in the field of control and vibration suppression
[1] have been drawn high attention and resulted in a dense
literature in the usage of piezoelectric patches in vibration
control of the flexible structures. Since the number of sensors
and actuators is often limited by physical or economical con-
straints, therefore their placement is fundamentally important
to get a desirable performance for designed control system
[2]. Optimal placement of piezoelectric sensors and actuators
for vibration control of a composite cantilever plate has been
studied by Qiu et al. [1]. They used the genetic algorithms to
find efficient locations of piezoelectric sensors and actuators.
They defined their objective function in a way that it max-
imized the observability and countability indexes. They also
designed an efficient control method by combining Positive
Position Feedback (PPF) and proportional-derivative control
for vibration reduction. Their results showed that the presented
control method was feasible and the optimal placement method
was effective. In another the optimal placement of collocated
angular rate sensors and Control Moment Gyroscope (CMG)
actuators for a constrained gyroelastic body using genetic
algorithms was investigated by Jia et al. [3]. They showed that
the number of CMG.s embedded in the constrained flexible
plate was not “the more, the better” for vibration suppression.
Their results also showed that CMG.s were mainly placed at
the corner and the two sides of the constrained plate. Chhabra
et al. worked on optimal placement piezoelectric actuators
on plate using Modified Control Matrix and Singular Value
Decomposition (MCSVD) [4] . They considered the singular
values of control matrix of ten actuators as fitness function
and by maximizing it, they obtained the optimum placement
of the actuators. They used GA and their results indicated that
the position of the patches were symmetric to the center axis.
The goal of the current study is to find the optimum number of
piezoelectric sensors and actuators and their optimum position
to design the control system with maximum controllability
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and observability. The genetic algorithm has been used by
considering natural number coding for the numbers of the
actuators and continues modeling for their positions on the
plate. The plate is assumed to be rectangular and having
boundary conditions of one fixed side and three free sides
(i.e., cantilever plate). The Hs norm [5] has been used to
define controllability index as one of the objective functions.
Constraints have been specified to prevent overlapping of the
piezoelectric patches. Using the innovization concept, few
design principles have been derived which can be used as
thumb rules by practitioners. The obtained results have been
verified by controller designed based on the optimum number
and positions of the sensors and actuators. At the end, the
results have been discussed in details.

II. MATHEMATICAL MODELING

1) PFartial Differential Equation of Motion of The Plate: In
this section, mathematical modeling of the system is defined.
Fig. 1 shows the schematic model of the cantilever plate with
general positions of the piezoelectric patches.
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Fig. 1. Schematic model of the cantilever plate with general positions of

piezoelectric patches

The partial differential equation of motion of a rectangular
cantilever plate based on the Kirchhoff-Love plate theory can
be written as follow:

ot 84 64

Pw(x,y,t

Dy ot?
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where w(z, y, t) is the modal displacement of the rectangu-
lar plate, and D, is the flexural rigidity which for an isotropic

plate can be defined as:

E,h3

Dy=—2"
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In which E,, vp, pp, and h, are Young’s modulus, Poisson’s
ratio, mass density and thickness of the plate, respectively. x
and y are the coordinate variables and ¢ is the time parameter.
The Galerkin’s method has been utilized to find the approx-
imate response of the Eq. (1). This method has been proved

to predict the response of the system perfectly and has been
widely used in the literature [6]. According to this method,
the general form of the transverse deflection of the plate for
the four first vibration modes can be defined as follow:

2 2
w(z, g, t) = Y > Won (@, 4)dmn (t) 3)

Where m and n denote the (m,n)th vibration mode of the
plate, ¢, (t) represents the system time dependent modal co-
ordinate, and W,,,,,(x,y) is the corresponding modal displace-
ment function in the x and y directions. By considering the
cantilever (CFFF) boundary condition for the plate, W,,,, (z,y)
can be defined as follow [7]:

Wmn(xvy) = Xm(x)Yn(y), “4)

where

sinh(g,,1) — sin(en,l)

X (z) = cosh(epz) — cos(emz) —

cosh(e,l) + cos(enl)
X [sinh(enz) — sin(en )]
&)
1 n=1
\/g n=2
Y;I(y) = Sin(any) + Sin(gny)+ (6)
cos(epl)—cosh(ey,l)
(e Temb(eoT) Lcos(Eny)+
cosh(e,y)] n>3

2) Dynamic Analysis of Plate with Piezoelectric Patches:
Attaching the piezoelectric patches will effect the dynamic
behavior of the plate due to their physical characteristics.
Such effects are too small, but not negligible, therefore it is
necessary to consider these effects on the modal analysis of the
system. As illustrated in Fig. 1, the rectangular piezoelectric
sensors and actuators have been attached to the plate and will
be used to measure the modal deflection and displacement
velocity of the plate. Electrical circuit generated by sensors
can be written as follow:
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where r; shows the distance between middle plane of the
ith sensor and the middle plane of the plate. e31;, €39,
and esg; denote the piezoelectric stress constraints of each
Sensor. l;q; and ly,; are the length of each sensor patch in x
and y directions, respectively. Also, the piezoelectric actuator
coefficient could be obtained using the following relationship:
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Considering the dynamic effect of the piezoelectric patches
on the plate, one could derive the equation of motion of the
plate with the attached piezoelectric patches as follow:

N,
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3) Modal Analysis and State-Space Equations: By per-

forming modal analysis on the partial differential equation of
motion of the system, Eq. (10), and doing some mathematical
simplification, the ordinary differential equations (ODE) for
the ith mode can be derived as:

No p
> i Piezo] 7

(10)
M, ’

$i + widi +wiCidi +
where w; is the natural frequency of the ¢ th mode, (; is the
damping coefficient of the ¢ th mode of the system. Having
ODE of each mode, one can rewrite the ODEs in standard
state-space form as:

2= Az+ Byuy, (11)

Y =Cpz (12)

III. PROBLEM DEFINITION

In this part, the optimizing problem is defined based on
the controllability and observability of the control equations
defined in the previous section. Finding the optimum number
of piezoelectric and their optimum position is the goal of
the optimization problem. The objective functions will be
defined and some constraints will be considered which will
be explained in details in the following subsections.

1) Controllability Index: In order to find the optimal place-
ment of sensors and actuators, the Hs norm of the control
transfer function is used. Considering (A, B,C) as the sys-
tem state-space representation, the transfer function would be
defined as:

G(w) = C(jwl — A)~! (13)

Therefore the norm of the transfer function can be found
using the following relationship [5]:

1Gll2 = %/w@WWMMw (14)

By substituting Eq. (13) into Eq. (14) and doing some mathe-
matical simplifications, the Hs norm function can be defined
as function of state-space matrices as follow:

1Bi| x |Gi|

Gl = 5 ==

15)

The placement index of each jth actuator for the :th mode of
the system is defined as [1]:

1,2,...,(m x n),
7Na-

b2ij = wi||Gll2i; i =

1=12 .. (16)
Where w; represents the weight of each mode which reflects
the importance of that mode for controlling system. Therefore,
the Hs norm optimal placement index for the system based on
the controllability can be defined as the first objective function
of the optimization problem:

mXn

> b2
i=1

The other objective function of the optimization problem is
the number of the actuators (or the total cost) which needs to
be minimized:

Max : (17)

pj =

Min: Npe = Cost($) = 200 x Ny,

(18)
1< Npe €20

where N, is the number of piezoelectric patches.
According to the available literature, there are many differ-
ent methods such as Goal Programming, NSGA-II [8], e-
constraints [9], etc. to find the Pareto front set of the multi-
objective problem.

The problem can be solved as a bi-objective or bi-level
optimization problem, but the challenging part is its variable
dimension size, due to the change in number of piezoelectric
patches. In order to tackle this problem, inspired from the
e-constraint method [9], for each number of piezoelectric
patches, the genetic algorithm (GA) has been run for the single
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objective (i.e., performance) and the best solution has been
recorded. By repeating this approach for all possible number of
piezoelectric patches and combining all the solutions obtained
from the GA, the Pareto-front solutions have been achieved,
By this way, the problem is treated as N single-objective
problems, where N is the number of cases considered for
variant number of piezoelectric patches. The GA function of
MATLAB® software is used to find the optimal solutions in
this study which detailes of the algorithm can be found in
the references [10]-[12]. The control parameters set for GA
are the population size of 100 (/V,), mutation rate (C,,) of
0.01, crossover rate (C,.) of 0.8, and the termination condition
is based on allowed maximum generation numbers which is
mentioned in the Eq. (18). For each single-objective problem,
the dimension of the problem is equal to the all = and y
positions of the piezoelectric patches. For instance, if the num-
ber of the piezoelectric patches are 13, so that the dimension
of the GA would be D = 26. Also, for each problem the
maximum number of generations was defined based on its
dimension as the termination condition Maxg., = 500 D.
It is noteworthy to mention that using optimization method
to find the best solution reduces the computational time
efficiently in comparison with the brute force search which is
computationally expensive. This is while number of available
positions for each piezoelectric patch is 768, obtained from
N; x Ny with N, = 24 and N, = 32. Therefore the total
number of different candidate combinations can be calculated
using the following formula:

. (768 768!
T8 Nee T\ Npe )~ Npel(768 — Npe)!

For example, as the number of piezoelectric patches in-
creases from 1 to 5, 10, 15 and 20, the number of possible
combinations which results in expensive computational time
for performing exhaustive search increase rapidly as follow:

19)

Npe =1 Cres.1 = 768

Npe =5 Cress = 2.1977 x 102
Nye =10 Cres.10 = 1.8548 x 1072
Npe = 15 Cres1s = 1.2711 x 103!
Npe =20 Cres.20 = 1.6321 x 10*?

Considering the time needed for calling the controllability
index in each run of the program, it is obvious that performing
the exhaustive search is almost impossible due to the high
computation time. As an example, for IV, = 10, the function
call takes about 0.04 seconds and by considering number of
possible combinations for 10 number of piezoelectric patches,
approximately 1.2684 x 10'® years is needed to finish the
search.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the numerical results have been discussed.
The plate is considered with the length of @ = 1.5 m and
width of b = 0.5 m. The physical characteristics of the plate

are B, = 70 GPa, v, = 0.33, p, = 2700 kg/m?, and
h, = 0.015 m. The Piezoelectric patches have the physical
characteristics as I, = 0.06 m, Iy, = 1.5 m, Ep. = 63 GPa,
Vpe = 0.3, ppe = 7650 kg/m?, and hye = 0.001 m; which are
length of the patches in x and y directions, Young’s modulus,
Poisson’s ratio, mass density and the thickness of the patches,
respectively. It is assumed that all piezoelectric patches are the
same and attached to the plate horizontally.
The GA has been run for 20 times and in each time the
termination criteria has been defined to reach the maximum
number of generation defined for the problem in Eq. (18):
The solution found by GA in each step is the optimal
positions for piezoelectric patches on the plate. As three case
studies, the best found positions and GA performance plot
have been shown in Fig. 2 to Fig. 8. It should be mentioned
that each sell shows a candidate position and filled cells
represent the positions found by GA as solution:

y(m)

Fig. 2. Schematic model of the cantilever plate with optimum positions of
piezoelectric patches for Npe = 8.

x(m)

* 10% Best: -17112.7

-0.6

-0.8

Penalty value
b
i

(s

-1.8

"o 1000 2000 3000 4000 5000 6000 7000 8000

Generation

Fig. 3. GA performance plot for Ny = 8.

1) Results Analysis: It can be seen that in the all shown case
studies, the optimum positions found by the GA are mainly
at the corners of the free end of the plate. Few number of
the piezoelectric patches have been placed at the sides centers
and almost no piezoelectric patches has been placed at the
fixed end. Considering the vibration behavior of a cantilever
plate [13], to be able to control the vibration, since the highest
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Fig. 4. Schematic model of the cantilever plate with optimum positions of
piezoelectric patches for Npe = 9.
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Fig. 5. Schematic model of the cantilever plate with optimum positions of
piezoelectric patches for Npe = 10.

x(m)

displacement occurs at the free ends, it is logical to set
majority of the piezoelectric patches at the free end to be able
to control the vibration faster.

In each run, the average of the best solutions so far and also
the best solution have been collected and the Pareto-front (PF)
has been created as shown in Fig. 10. This PF illustrates
the best solutions found by the optimization for the objective
functions contrallability index and number of piezoelectric
patches (cost). This should be mentioned that the cost has
been calculated based on the number of piezoelectric patches
used in each run (200 $ per piezoelectric patch).

As shown in Fig. 10, there are two important bend (i.e.,
knee points) happening at N, = 9 and Np. = 14. The
controllability index increases by 1.89% when the number of
actuators increases from 8 to 9, while by adding only one more
actuator, the controllability increases by 11.94%. The same is
happening for point N,. = 14, when the designer increases
the number of actuators from 14 to 15, adding only one more
actuator will lead to 14.76% increase in controllability index.
In order to make it easier for a decision maker to select one
of the solutions, Table I is presented for each optimal solution
of the PF shown in Fig. 10.

In order to find the closest possible PF to the optimal PF, a
warm initialization has been performed with 500 and 3000
generations in each run. The warm initialization has been
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Fig. 6. GA performance plot for Ny = 10.
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3

Fig. 7. Schematic model of the cantilever plate with optimum positions of
piezoelectric patches for Npe = 15.

x(m)

applied by feeding the GA obtained PF solutions shown in
Fig. 10 as an initial population. The results were the same
except for Ny, = 18 and N, = 19 in which 0.84% and 0.2%
improvements have been obtained, respectively. The obtained
PFs as results of the warm initialization have been shown in
Fig. 10.

V. EXTRACTING DESIGN PRINCIPLES AFTER
OPTIMIZATION USING INNOVIZATION

Innovization is a recently introduced methodology in which
the solutions found by optimization are analyzed to extract
useful relationships and design principles. These design prin-
ciples can help designers and practitioners to obtain deeper
understanding of the problem and also motivate them for
working on further applications and solving more complex
problem [14]-[17]. Inspired by innovization technique and
by analysing found optimal positions of sensor-actuator, the
following thumb rules can be derived which are usable by
designers:

Rule 1:
Rule 2:

Positions should be chosen in a symmetrical style.
The corners of the free end of the plate should be
the very first positions to be chosen.

After free corners (for Ny > 8 in this study), the
middle positions of the side edges should be filled
with the piezoelectric patches.

Rule 3:
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Fig. 9. Schematic model of the cantilever plate with optimum positions of
piezoelectric patches for Npe = 16.

Rule 4: Positions at the fixed ends should not be chosen
unless no other position is available.
It is better not to choose positions in the middle

of the plate.

Rule 5:

Considering the first mentioned rule, the effect of the
symmetric positions has been studied by changing the obtained
positions by the optimization in a symmetric style. Therefore,
by combining the artificial and human intelligence, symmetric
positions have been chosen for the piezoelectric patches and
some of them have been shown in Fig. 12 and Fig. 13.

By taking into account the modified symmetric positions,
the new PF has been compared with the PF found by the
optimization in the previous section. It can be seen that in the
all cases, except one (N, = 15), the controllability index has
increased and even some cases which had been dominated
in the previous PF, N,, = 12 and N, = 16, now can be
seen in the PF, Fig. 14. The reason behind the improvements
in PF after applying the innovization based rules is that the
evolutionary algorithms performance in local search is week
and innovization acts like a local search for the solution found
by the evolutionary algorithm.

VI1. VERIFICATION OF VIBRATION CONTROL

In order to illustrate how significant is to find the optimum
positions for the piezoelectric patches, solution of the opti-

Cost ($)

w1075 800 1200 1600 2000 2400 2800 3200 3600 4000
3 14t0 15
Increase in Cont. Index:

14.76%

9to 10
Increasein Cont. Index:
11.94 %

L

15to 16
Increase in Cont. Index:

Controllability Index

0.5

6 7 8 91011121314151617181920
Number of Actuators

123435
Fig. 10. Pareto front, Controllabilty index, Number of Actuators, and Cost

(200$ per patch).

TABLE I
TABLE OF PARETO-FRONT

H Num. Piezo H Contr. index (x10~16) “ cost($) H

1 2.344 200
3 6.836 600
5 11.1 1000
7 15.16 1400
9 17.44 1800
11 20.58 2200
13 21.63 2600
15 27.57 3000
17 28.13 3400
19 28.96 3800

mization for ten number of patches has been fed into a Fuzzy
Logic Controller designed and simulated by SIMULINK®
software. In the fuzzy controller, the goal is to quickly damp
vibration of the cantilever plate. In order to aim this goal,
the sensors have been assigned to detect the plate vibration
velocity and the actuators are responsible for applying external
forces to cancel out the vibration of the plate. Membership
functions for input and output of the fuzzy controller have
been considered in five levels as high negative (HN), negative
(N), zero, positive (P), and high positive (HP) for the velocity
and the actuation force. Five fuzzy rules have also been defined
to apply high positive force while the velocity is high negative
or apply high negative force when the velocity is high positive.
As numerical investigation, two cases have been studied:
one using the optimum positions found by the optimization
algorithm, and the other case utilizing randomly placed piezo-
electric patches on the plate. As it was mentioned in the
previous section, the symmetry of the patches position is one
of the most important rules obtained based on the innovization
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Fig. 12. Modified positions based on symmetry (Npe = 15)
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and one may predict that by changing the positions from the
optimum symmetric ones into the randomly distributed ones,
the controller performance will extremely decrease.

As shown in Fig. 15 and Fig. 16, when the piezoelectric
patches have been placed in the optimum positions, the vibra-
tion of the plate is controlled within shorter time in all four
first vibration modes of the system. Such numerical results
are strong proofs that show the efficiency of the design rules
found by innovization.

VII. CONCLUSION REMARKS

Active vibration control of the rectangular isotropic plate us-
ing piezoelectric sensors and actuators with optimum number
and positions have been performed in this study. Multiobjec-
tive optimization problem was defined to get the best possible
solutions and to find the PF. A genetic algorithm inspired by
e-constraint method have been used to find the PF. In order to
get the optimal positions for sensors and actuators, genetic al-
gorithm was used and the objective function was defined as the
H, norm of the controllability of the plate with piezoelectric
patches. A result analysis was performed on the PF and was

y(m)

=

Fig. 13. Modified positions based on symmetry (Npe = 16)

x(m)

shown that sometimes adding one more piezoelectric patch
increases the controllabilty with high percentage (it happens
in knee points of PF). The optimal positions found by GA were
illustrated for different case studies and the GA performance
plots were shown in the result part. Based on the innovization
technique, few useful design principles were learned. One of
the most important of these rules says that to get the highest
controllability, the position of piezoelectric patches should be
chosen symmetrically. Also, the free end corners should be
the very first positions to be chosen by the designer. Choosing
symmetric positions for piezoelectric patches (the first rule
learned by innovization) changed the PF in a way that some
of the dominated points in the initial PF become evident after
applying the rule. The fuzzy logic controller was utilized to
investigate the vibration control of the first forth mode of the
plate. The results showed that using the optimal positions for
the placement of the sensors and actuators highly decreases
the vibration control time efficiently.

w
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== PF found by Optimization| -
37 |=@ PF found by Innovization

Controllability Index
o (=]
tn ~ n
. ‘ ‘
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56 78 91011121314151617 1819 20
Number of Actuators

012 3 4

Fig. 14. The PF found by optimization vs. PF found by Innovization.
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