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Abstract Firefly algorithm (FA) is a new swarm intelli-
gence optimization algorithm, which has shown an effective
performance on many optimization problems. However, it
may suffer from premature convergence when solving com-
plex optimization problems. In this paper, we propose a new
FA variant, called NSRaFA, which employs a random attrac-
tionmodel and three neighborhood search strategies to obtain
a trade-off between exploration and exploitation abilities.
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Moreover, a dynamic parameter adjustment mechanism is
used to automatically adjust the control parameters. Exper-
iments are conducted on a set of well-known benchmark
functions. Results show that our approach achieves much
better solutions than the standard FA and five other recently
proposed FA variants.
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1 Introduction

Nowadays, most new algorithms are bio-inspired, because
they have been developed by drawing inspiration from
nature. Swarm intelligence algorithms are a special class
of bio-inspired algorithms, which have been developed
by the collective behaviors of nature (Fister et al. 2013).
In the past decades, swarm intelligence algorithms have
become popular. Good examples are ant colony optimiza-
tion (ACO) (Dorigo et al. 1996), particle swarm optimization
(PSO) (Kennedy and Eberhart 1995), bat algorithm (Yang
2010), cuckoo search (CS) (Yang and Deb 2009), and firefly
algorithm (FA) (Fister et al. 2013; Yang 2008).

Firefly algorithm (FA) is a recently proposed swarm intel-
ligence algorithm inspired by the idealized behavior of the
flashing characteristics of fireflies. Previous studies show
that FA outperforms genetic algorithm (GA) and PSO on
some benchmark functions (Yang 2010). Because of FA’s
simple concept, easy implementation, and its effectiveness,
it has been successfully applied to various optimization
fields, such as complex networks (Amiri et al. 2013), unit
commitment (Chandrasekaran et al. 2013), energy con-
servation (Coelho and Mariani 2013), structural optimiza-
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tion (Gandomi et al. 2013; Miguel et al. 2013), image
compression (Horng 2012), stock forecasting (Kazem et al.
2013), economic dispatch (Liang et al. 2015; Yang et al.
2012), and so on.

In FA, the fitness function for a given problem is asso-
ciated with the light intensity. The brighter the firefly, the
better is the firefly. That means a brighter firefly has a better
fitness value. The search process of FA depends on the attrac-
tion among fireflies. The standard FA defines a full attraction
model, in which each firefly is attracted by all other brighter
fireflies in the swarm. If fireflies are attracted by too many
other fireflies, all fireflies will become similar. As a result,
FA shows slow convergence rate during the search process.
Moreover, FA with a fully attracted model has high compu-
tational time complexity. For a population with N candidate
solutions, most nature-inspired algorithms only conduct N
operations in each generation, while FA executes N (N−1)

2
operations.

In the standard FA and its most variants, a firefly moves
toward other brighter fireflies by attraction. However, if a
firefly is brighter than another one, the brighter one will not
be conducted any search. It seems that the FAmainly updates
the search on worse fireflies (candidate solutions). That may
slow down the convergence speed.

To address the above two issues, we propose a new FA
called the randomly attracted FA with neighborhood search
(NSRaFA). The new approach employs three strategies: (1)
a dynamic parameter adjustment mechanism; (2) a random
attraction model; and (3) three neighborhood search opera-
tors. Thefirst strategy aims to automatically adjust the control
parameters α and β, and avoid manual parameter settings.
The second one is helpful to accelerate the convergence speed
and reduce the computational time complexity. The last one
defines a new neighborhood search operation for brighter
fireflies (better candidate solutions).When afirefly is brighter
than another one, the neighborhood search is conducted on
the brighter one to provide more chances of finding better
solutions.

The rest of the paper is organized as follows. Section
2 presents the standard FA and its brief review. Section
3 describes our proposed approach. Section 4 presents the
experimental results and discussions. Finally, the work is
concluded in Sect. 5.

2 Related work

2.1 Firefly algorithm

The original FAwas developed by Yang (2008). It is inspired
by the social behavior of fireflies.Most fireflies produce short
and rhythmic flashes to attract mating partners and poten-

Algorithm 1: The Standard FA
Randomly generate N fireflies (solutions) as an initial population1
{Xi |i = 1, 2, . . . , N };
Calculate the fitness value of each firefly;2
FEs = N ;3
while FEs ≤ MAX_FEs do4

for i = 1 to N do5
for j = 1 to N do6

if f (X j ) < f (Xi ) then7
Move firefly Xi towards X j according to Eq. (3);8
Calculate the fitness value of the new solution;9
FEs++;10

end11
end12

end13
end14

tial prey. To describe the FA, the following three rules are
used (Yang 2010):

– All fireflies are unisex. So, one firefly will be attracted to
other fireflies regardless of their sex.

– Attractiveness is proportional to their brightness. Thus,
for any twoflashing fireflies, the less bright onewillmove
toward the brighter one.The attractiveness is proportional
to the brightness and they both decrease as their distance
increases. If there is no brighter one than a particular
firefly, it will move randomly.

– The brightness of a firefly is affected or determined by the
landscape of the objective function. For a minimization
problem, the brightness can be reciprocal of objective
function. It means that a brighter firefly has a smaller
objective function value.

In FA, the attractiveness of a firefly is determined by its
light intensity. According to Yang (2010), the attractiveness
can be calculated as follows:

β(r) = β0e
−γ r2 , (1)

where β0 is the attractiveness at r = 0, and r is the distance
between two fireflies. The parameter γ is the light absorption
coefficient, which is usually set to 1.

For two fireflies Xi and X j , their distance ri j can be
defined by

ri j = ‖Xi − X j‖ =
√
√
√
√

D
∑

d=1

(

xid − x jd

)2
, (2)

where D is the problem dimension.
Themovement of a firefly Xi , which is attracted to another

brighter firefly X j , is determined by

xid (t + 1) = xid (t) + β0e
−γ r2

i j
(

x jd (t) − xid (t)
) + αε, (3)
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where xid and x jd are the dth dimension value of firefly Xi

and X j , respectively. In addition, ε = (rand − 1/2) and
rand is a random variable that is uniformly distributed in the
range [0, 1],α ∈ [0, 1] is the step parameter, and t = 1, 2, . . .
indicates the iteration number.

The main steps of the standard FA are described in Algo-
rithm 1, where N is the swarm size, f (·) is the fitness
evaluation function, FEs is the number of fitness evaluations,
and MAX_FEs is the maximum number of fitness evalua-
tions. In this paper, we only considerminimization problems.
Thus, f (X j ) < f (Xi ) means that firefly X j is better than
firefly Xi in terms of fitness value.

2.2 Some FA variants

Since FA was developed, it has become a popular optimizer
and has widely been applied in practical or benchmark prob-
lems (Duang and Luo 2015; Fister et al. 2013). In the past
several years, some new FA variants have been proposed. A
brief overview of these variants is presented as follows.

2.2.1 Memetic FA (MFA)

To improve the performance of FA, Fister et al. (2012)
designed a memetic FA (MFA) to solve combinatorial opti-
mization problems. In MFA, a new movement equation is
proposed as follows.

xid (t + 1) = xid (t) + β
(

x jd (t) − xid (t)
) + α(t)sd ε, (4)

β = βmin + (

β0 − βmin

)

e
−γ r2

i j , (5)

α(t + 1) =
(

1

9000

) 1
t

α(t), (6)

sd = xmax
d

− xmin
d

, (7)

where βmin is a minimum value of β, sd is the scale of each
design variable, and [xmin

d
, xmax

d
] is the boundary constraint

for the dth variable. Although MFA is designed for combi-
natorial optimization problems, our experiments show that it
works well on continuous problems.

2.2.2 FA with chaos (CFA)

In Gandomi et al. (2013), Gandomi et al. introduced chaos
into FA to increase its global search ability for robust global
optimization. The CFA designed three groups of experi-
ments: (1) the parameter γ is replaced with the different
chaotic maps; (2) the parameter β is generated by differ-
ent chaotic maps; (3) both γ and β are updated by different
chaotic maps.

There are 12 different chaotic maps including Chebyshev,
Circle, Gauss/Mouse, Intermittency, Iterative, Liebovitch,

Logistic, Piecewise, Sine, Singer, Sinusoidal, and Tent. Sim-
ulation results show that tuning of the β is more effective
than tuning γ . The Gauss map may be the best choice for
updating the parameter γ . There is no improvement when
both γ and β are replaced with the chaotic maps. In Fister
et al. (2015), a comprehensive overview of FA is presented
with chaotic maps.

2.2.3 Wise step strategy FA (WSSFA)

In Yu et al. (2014), a wise step strategy for FA is proposed
to set the step for each firefly. In WSSFA, each firefly in the
swarm has an independent step parameter αi , which consid-
ers the absolute distance of firefly’s previous best and the
global best positions. The αi for each firefly is defined by

αi (t + 1) = αi (t) − (

αi (t) − αmin

)

e− |gbest−pbest
i
|t

Gmax , (8)

where αi is the step parameter for the i th firefly in the swarm,
αmin is the minimum step in the range [0, 1], pbest

i
is the pre-

vious best firefly of Xi , gbest is the global best firefly found
so far and Gmax is the maximum number of generations.

2.2.4 Variable step size FA (VSSFA)

In the standard FA, the step parameter α is static. It may
not be helpful to the search. Generally, a large α is suitable
for exploring new search space, while a small α is good for
exploitation. In Yu et al. (2015), a new FA called variable
step size firefly algorithm (VSSFA) is proposed. In VSSFA,
the parameter α employs a dynamic adjusting method in the
following form:

α(t) = 0.4

1 + e
t−Gmax

200

. (9)

The reported results show that VSSFA andWSSFA achieved
better solutions than the standard FA on some test functions.
However, most of these functions are only two dimensional.
Our experiments show that the performance of VSSFA and
WSSFA may be seriously affected by its problem dimen-
sion.

2.2.5 Other approaches

To enhance the performance of FA, Farahani et al. (2011)
proposed a Gaussian distributed FA (GDFA), in which the
Gaussian distribution is used to move all fireflies to the
global best in each iteration. Computational results on five
benchmark functions show that GDFA outperforms particle
swarmoptimization (PSO)Kennedy andEberhart (1995) and
the standard FA. Tilahun and Ong (2012) modified the ran-
dom movement of the brighter firefly by generating random
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directions to determine the best direction. In addition, the
assignment of attractiveness was modified in such a way that
the effect of the objective function was magnified. Results
indicated that the modified FA achieved better solutions than
the standard FA.

Quaternion is a concept in mathematics, which can extend
complex numbers (Chen et al. 2015). In Fister et al. (2013),
quaternion is used for the representation of individuals in
FA so as to enhance the performance of the firefly algorithm
and to avoid possible stagnation. Wang et al. (2014) pro-
posed amodified FA based on light intensity differences. The
new algorithm considers the variation trend of light inten-
sity differences. The light intensity differences vary with
the movements of fireflies. Thus, the parameter settings are
dynamically adjusted for different problems.

2.2.6 Applications of FA

Senthilnath et al. (2011) presented a performance study of
FA on clustering. Simulation results show that FA can be
efficiently used for clustering. Yang et al. (2012) applied FA
to solve non-convex economic dispatch (ED) problems with
value loading effect. To verify the efficiency and applicability
of the FA, four ED problems are utilized in the experiments.
Results show that FA is considered to be a promising alter-
native algorithm for the ED problems in practical power
systems. The vector quantization (VQ) was a powerful tech-
nique in the applications of digital image compression.
Significant energy savings can be achieved by optimizing
chiller operation and design in heating, ventilation, and cool-
ing (HVAC) systems. Coelho and Mariani (2013) designed
an improved FA (IFA) based on Gaussian distribution to the
optimal chiller loading design. Results show that the pro-
posed IFA outperforms several optimization methods of the
literature in terms of minimum energy consumption. Kazem
et al. (2013) designed a hybrid FA to predict the price of
the stock. The new approach employs two strategies: chaotic
FA and support vector regression (SVR) (Gu et al. 2015a, b).
Results show that the new approach is better than artificial
neural networks (ANNs), GA-based SVR (GA-SVR), and,
adaptive neuro-fuzzy inference systems.

Software testing is an important, but challenging task in
the software life cycle. How to optimize the software test-
ing process is a difficult task to solve, and the generation of
the independent test paths remains unsatisfactory. Srivatsava
et al. (2013) used a modified FA to generate optimal test
paths. Results show that the test paths generated are critical
and optimal.

In Long et al. (2015), a heart disease diagnosis system
was proposed, in which rough sets-based attribute reduction
using chaotic FA is investigated to find the optimal reduction.
Sahu et al. (2015) presented a novel hybrid FA and pattern
search (hFA-PS) for automatic generation control (AGC)

of multi area power systems. Results show that hFA-PS is
able to handle nonlinearity and physical constraints in the
system model. In Mahapatra et al. (2014), the hFA-PS was
successfully applied to design a static synchronous series
compensator (SSSC)-based power oscillation damping con-
troller. In Kougianos and Mohanty (2015), FA is applied to
optimize the cost of leakage delay product (LDP) under var-
ious resource constraints.

Studying the evolutionary community structure in com-
plex networks is crucial for uncovering the links between
structures and functions of a given community.Most commu-
nity detection algorithms employ single optimization criteria.
Amiri et al. (2013) considers community detection process
as a multi-objective optimization problem (MOP) for inves-
tigating the community structures in complex networks. To
tackle this problem, a new multi-objective enhanced FA
is proposed. Experimental results show that the proposed
approach provides useful paradigm for discovering overlap-
ping community structures robustly. Recommender systems
(RS) is a new technique,which canprovide useswith required
information (Ma et al. 2015). In Shomalnasab et al. (2014),
FA was used for the optimal similarity in collaborative fil-
tering. Results show that FA can improve the accuracy of
recommendation on some real data sets.

Image segmentation is an important operation for image
processing (Li et al. 2015; Zheng et al. 2015). FA was used
to optimize Otsu’s method. Simulation results show the effi-
ciency of FA (Hassanzadeh et al. 2011). Classification is a hot
research direction in the area of machine learning (Wen et al.
2015). In Saraç and Özel (2013), FA was applied to select a
subset of features for Web page classification. Experiments
on some WebKB and conference data sets show the effec-
tiveness of FA.

With the rapid development of a smart society, different
sensor networks have been designed (Gopinadh and Singh
2015; Xie and Wang 2014). Among these networks, under-
water sensor networks (UWSNs) are a new technique (Shen
et al. 2015). Xu and Liu (2013) proposed a variant of the
fireflyalgorithm, calledmulti-populationFA(MPFA) for cor-
related data routing in UWSNs. Results showed that MPFA
achieved better performance than some existing protocols.
Cloud computing is a very hot research topic in information
technique (Fu et al. 2015; Ren et al. 2015; Xia et al. 2015b).
Florence and Shanthi (2014) used FA to maximize the usage
rate of resource in cloud servers.

Recently, some discrete and binary FA variants have been
proposed. Poursalehi et al. (2013) developed a discrete FA
to implement the loading pattern optimization of nuclear
reactor core. Sayadi et al. (2013) proposed another dis-
crete FA, in which a firefly’s position is defined in terms of
changes of probabilities that will be in one state or the other.
Chandrasekaran et al. (2013) presented a new biologically-
inspired binary real coded FA to solve the unit commitment
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problem (UCP) by considering the system and generating
unit constraints.

Furthermore, Marichelvam et al. (2014) designed a dis-
crete FA for the multi-objective hybrid flowshop scheduling
problems. Makespan and mean flow time were the consid-
ered objective functions. Results showed that the proposed
approach outperformed many other algorithms in the liter-
ature. Rahmani and MirHassani (2014) proposed a hybrid
evolutionary firefly-genetic algorithm for capacitated facility
location problem. Results on some randomly generated prob-
lems consisting of 2000 locations and 2000 customers were
reported. Steganalysis is an important technique in informa-
tion security, which can detect the hidden messages (Xia
et al. 2014, a). In Chhikara and Singh (2015), a discrete FA
was used to improve the performance of blind image ste-
ganalysis.

3 Proposed approach

In this section, we present a new FA variant, called the ran-
domly attracted FA with neighborhood search (NSRaFA).
The NSRaFA employs three strategies: a dynamic parameter
adjustment mechanism, a random attractionmodel, and three
neighborhood search operators.

3.1 Dynamic parameter adjustment mechanism

For the movement attraction, there are some different updat-
ing equations. Fister et al. (2012) proposed a modified
movement equation (see Eq. 4), in which the α is multiplied
by the scale of the designed variables. Gandomi et al. (2013)
suggested that the parameter α should ideally be related to
the actual scale of the designed variables. Our experimental
results show that the Eq. (4) is suitable for solving continu-
ous optimization problems. Therefore, we employ the Eq. 4
as the movement equation in our approach.

However, both parameters α and β are very important
for the performance of the FAs. Different parameter set-
tings may seriously affect the accuracy of the final solutions.
The search of FA is determined by the attractions among
fireflies in the swarm. As the iterations continue, fireflies
gradually approach the converged states because of the attrac-
tions. When FA is finally convergent, Xi (t + 1) = Xi (t) and
Xi (t) = X j (t) are satisfied as t → ∞. According to Eq. (3),
we can get

Xi (t + 1) − Xi (t) = 0

⇒ β0e
−γ r2i j

(

X j (t) − Xi (t)
) + α

(

rand − 1
2

) = 0
⇒ 0 + α

(

rand − 1
2

) = 0
⇒ α = 0.

(10)

The above analysis demonstrates that α should be equal
to 0, when FA converges to an optimal solution. To satisfy
Eq. (10), a dynamic parameter setting method is proposed as
follows.

α(t + 1) = 0.99α(t), (11)

where the initial α(0) is set to 0.5 according to empirical
studies. This idea of cooling down α is based on the original
idea in Yang (2008).

However, there is a potential a problem for Eq. (5) (please
see Fig. 1). At the beginning stage, the attractiveness β is

fixed to βmin = 0.2, because r is very large and e
−γ r2

i j tends
to be 0 (γ = 1.0). With increase of generations, β quickly
increases to β0 = 1.0. As shown, the changes of β are too
fast between t=500 and t = 700. That may not be beneficial
for the search. To slow down the increase of β, we propose a
modified strategy based on Eq. (5). The new β is defined by

β =
(

βmin + (

βmax − βmin

)

e
−γ r2

i j

)
t

Gmax
, (12)

where βmin and βmax are the minimum and maximum values
ofβ, respectively. In fact, it is difficult to select the best values
for βmin and βmax . Based on our empirical studies, they are
set to 0.3 and 0.9, respectively. As shown in Fig. 1, the new
strategy (Eq. 12) can efficiently slow down the increasing
speed of β.

3.2 Random attraction model

In the standard FA, each firefly is attracted by all other
brighter fireflies in the swarm. This attraction mechanism
is referred to as the full attraction model. Assume that there

Fig. 1 The changes of the attractiveness β under different parameter
strategies (Eqs. 5 and 12)
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are N fireflies in the swarm. To analyze howmany attractions
are there among fireflies in each generation, we rank all fire-
flies in the swarm. Then, the first firefly is the best one, and
the N th firefly is the worst one. It means that the first and the
N th fireflies are attracted by 0 and N − 1 fireflies, respec-
tively. Therefore, the total number of attractions (Tattraction ) for
all fireflies is calculated as follows.

Tattraction = 0 + 1 + · · · + N − 1 = N (N − 1)

2
. (13)

It can be concluded that the average number of attractions

for each firefly is
Tattraction

N = N−1
2 .

Although the full attraction model can provide many
chances of searching candidate solutions (fireflies), it may
result in oscillations under certain conditions. Finally, the
standard FA may show a slow convergence speed and hardly
achieves promising solutions under certain conditions such
as a fixed α. Furthermore, too many attractions dramati-
cally increase the computational time complexity. For a given
problem, we assume that O( f ) is the computational time
complexity of its fitness evaluation function f (·). The com-
putational time complexity of the standard FA is O(Gmax ·
N 2 · f ). Comparedwith other swarm intelligence algorithms,
such as PSO, its time complexity is only O(Gmax · N · f ).
Therefore, the standard FA has a higher complexity. How-
ever, as N is usually not large, this may not be the main issue.
The way of attraction can be more important.

In our previous work (Wang et al. 2016), we proposed a
random attraction model to reduce the computational time
complexity of FA. In the fully attracted model, each firefly i
is compared to the rest of the N − 1 fireflies, and the firefly
i may conduct the attraction movements many times. In our
random attraction model, each firefly i is only compared to
another randomly selected firefly j , and the firefly i carries
out the attraction movement once at most. Consequently, the
randomattractionmodel hasmuch less attraction than the full
attraction model. Let us consider an extreme case that each
firefly (except the brightest one) moves to another randomly
selected firefly. Thus, the maximum number of attractions
(T

′
attraction

) is

T
′
attraction

= 0 + 1 + · · · + 1 = N − 1. (14)

It is obvious that Tattraction is much larger than T
′
attraction

.
To clearly compare the full attraction model and random

attraction model, Fig. 2 shows three examples for the attrac-
tions of a firefly in the swarm, where N = 7. As seen, Fig. 2a
gives an extreme case for the full attraction model, in which
a firefly is attracted by all other six fireflies. In Fig. 2b, each
firefly is attracted by three other fireflies on average. Fig-
ure 2c presents an example for the random attraction model,
where each firefly is attracted by one other firefly at most.

(a) An extreme case for the full attraction
model.

(b) Average attractions for the full attraction
model.

(c) An example for random attraction model.

Fig. 2 Full attractionmodel versus random attractionmodel for N = 7

3.3 Neighborhood search

As mentioned before, a firefly moves to other brighter fire-
flies by attraction. If the current firefly is brighter than another
one, the current one will not be conducted any major search,
though it can be perturbed by a local random walk. It means
that the FAmainly carries out the search operations on replac-
ing someworse fireflies (candidate solutions). This may slow
down the convergence speed. Ifwe also carry out some search
operations on better fireflies, it may improve the exploitation
ability and accelerate the convergence speed.

123



Randomly attracted firefly algorithm with neighborhood search and dynamic parameter. . .

Algorithm 2: The proposed NSRaFA
Randomly generate N fireflies (solutions) as an initial population1
{Xi |i = 1, 2, . . . , N };
Calculate the fitness value of each firefly;2
FEs = N ;3
Initialize pbest and gbest ;4
while FEs ≤ MAX_FEs do5

for i = 1 to N do6
/*Random attraction model */
Randomly select a firefly X j from the swarm, and i 	= j ;7
if f (X j ) < f (Xi ) then8

/*Dynamic parameter adjustment mechanism */
Update the parameters α and β according to Eqs. (11) and (12),9
respectively;
Move firefly Xi towards X j according to Eq. (4);10
Calculate the fitness value of the new solution;11
FEs++;12

end13
else14

/*Neighborhood search */
Generate three trial solutions X1

i , X
2
i , and X3

i according to15
Eqs. (15), (16), and (17), respectively;
Calculate the fitness values of X1

i , X
2
i , and X3

i ;16
FEs = FEs + 3;17
Select the best solution among Xi , X

1
i , X

2
i , and X3

i as the new Xi ;18
end19
Update pbesti and gbest ;20

end21
end22

To address the above issue, we design three neighborhood
search strategies for the standard FA.When the current firefly
is brighter than another one, the brighter one will carry out
the neighborhood search to provide more chances of finding
more accurate candidate solutions. The neighborhood search
consists of three strategies: one local and two global neigh-
borhood search operators.

Assume that all N fireflies in the swarm are organized
in a circle topology according to their indices. For exam-
ple, XN and X2 are two immediate neighbors of X1 (Das
et al. 2009). Figure 3a presents an example for the circle
topology, where the population has 12 fireflies. Based on
the circle topology, Das et al. (2009) proposed a concept of
k-neighborhood. For each firefly Xi , its k-neighborhood con-
sisting of 2k + 1 fireflies Xi−k, . . . , Xi , . . . , Xi+k , where k
is an integer 0 ≤ k ≤ N−1

2 . Figure 3b shows an example for
the two-neighborhood, where there are five fireflies in the
neighborhood of Xi .

The concept for k-neighborhood has been successfully
used to improve the performance of differential evolution
(DE) and PSO (Das et al. 2009; Wang et al. 2013, 2011).
In Das et al. (2009), a neighborhood mutation operator is
proposed to balance the exploration and exploitation of DE.
Wang et al. (2013, 2011) presented two global and one local
search operators to enhance the performance of PSO. In this
paper, the neighborhood search strategies used in PSO (Wang
et al. 2013, 2011) are employed to conduct the search of those
better fireflies.

For each firefly, its neighborhood may have better candi-
date solutions. To improve the ability of exploitation, a local

(a) The circle topology

(b) The k-neighborhood

Fig. 3 The circle topology and k-neighborhood, where N = 12 and
k = 2

neighborhood search operator is proposed as follows.

X1
i = r1 · Xi + r2 · pbest

i
+ r3 · (Xi1 − Xi2), (15)

where Xi1 and Xi2 are two fireflies randomly selected from
the k-neighborhood radius of Xi (i1 	= i2 	= i), pbest

i
is the

previous best of the i th firefly, r1 , r2 and r3 are three uniform
random numbers with the range (0, 1), and r1+r2+r3 = 1.

Similar to the local neighborhood search operator, a global
neighborhood search operator is proposed to enhance the
ability of exploration.

X2
i = r4 · Xi + r5 · gbest + r6 · (Xi3 − Xi4), (16)

where Xi3 and Xi4 are two fireflies randomly selected from
the whole population (i3 	= i4 	= i), gbest is the global best
firefly found so far, r4 , r5, and r6 are three uniform random
numbers with the range (0, 1), and r4+r5+r6 = 1.

In the second neighborhood search operator, A mutation
operator of the Cauchy type is conducted. It is expected that
the long tail of the Cauchy distribution may help trapped
fireflies jump out of the local minima.

X3
i = Xi + cauchy(), (17)
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Table 1 The 12 benchmark functions used in the experiments.

Name Function Search range Global optimum

Sphere f1(x) = ∑D
i=1 x

2
i [−100, 100] 0

Schwefel 2.22 f2(x) = ∑D
i=1 |xi | + ∏D

i=1 xi [−10, 10] 0

Schwefel 1.2 f3(x) = ∑D
i=1(

∑i
j=1 x j )

2 [−100, 100] 0

Schwefel 2.21 f4(x) = max {|xi | , 1 ≤ i ≤ D} [−100, 100] 0

Rosenbrock f5(x) = ∑D
i=1 [100(xi+1 − x2i )

2 + (1 − x2i )
2] [−30, 30] 0

Step f6(x) = ∑D
i=1 
xi + 0.5� [−100, 100] 0

Quartic with noise f7(x) = ∑D
i=1 i · x4i + random[0, 1) [−1.28, 1.28] 0

Schwefel 2.26 f8(x) = ∑D
i=1 −xi · sin (

√|xi |) [−500, 500] −12569.5

Rastrigin f9(x) = ∑D
i=1 [x2i − 10 cos 2πxi + 10] [−5.12, 5.12] 0

Ackley f10(x) = −20 exp(−0.2
√

1
D

∑D
i=1 x

2
i ) − exp( 1

D

∑D
i=1 cos(2πxi )) + 20 + e [−32, 32] 0

Griewank f11(x) = 1
4000

∑D
i=1(xi )

2 − ∏D
i=1cos(

xi√
i
) + 1 [−600, 600] 0

Penalized

f12(x) = π
D {∑D−1

i=1 (yi − 1)2[1 + sin (πyi+1 )] + (yD − 1)2) + (10 sin2 (πy1)}
+ ∑D

i=1 u(xi , 10, 100, 4), yi = 1 + xi+1
4

u(xi , a, k,m) =
⎧

⎨

⎩

u(xi , a, k,m), xi > a
0, −a ≤ xi ≤ a
k(−xi − a)m , xi < −a

[−50, 50] 0

where cauchy() is a random number drawn from the Cauchy
distribution with a unity scale factor.

In our approach, when firefly Xi is brighter than firefly
X j , the firefly X j will move toward the firefly Xi , and the
firefly Xi will be conducted on the above three neighborhood
search operators. During the neighborhood search, three trial
solutions X1

i , X
2
i , and X3

i are generated by Eqs. (15), (16),
and (17), respectively. Then, the best solution among Xi , X1

i ,
X2
i and X3

i is selected as the new Xi .

3.4 The framework of NSRaFA

The main steps of NSRaFA are described in Algorithm 2,
where N is the population size, FEs is the number of fit-
ness evaluations and MAX_FEs is the maximum number of
function evaluations.

4 Experimental verifications

4.1 Test problems

To verify the performance of our approach, 12 benchmark
functions are utilized in the following experiments (Brest
et al. 2006; Fister et al. 2015;Wang et al. 2013). Among these
functions, f1– f5 are unimodal functions. f6 is a step function
which has one minimum. f7 is a noisy quartic function. f8–
f12 are multimodal functions with many local minima. All
these problems are to beminimized, and the dimensional size
D is set to 30. A brief description of these problems is listed
in Table 1.

Table 2 FA variants used for the comparison

Algorithm Year References

The standard FA 2010 Yang (2010)

Variable step size FA
(VSSFA)

2015 Yu et al. (2015)

Wise step strategy
FA (WSSFA)

2014 Yu et al. (2014)

Memetic FA (MFA) 2012 Fister et al. (2012)

FA with chaos (CFA) 2013 Gandomi et al. (2013)

FA with random
attraction (RaFA)

2015 Wang et al. (2016)

Our approach
NSRaFA

2015 –

4.2 FA variants used and their parameter settings

In this section, we compare the performance ofNSRaFAwith
the standard FA and five other recently proposed FA variants.
The involved algorithms are listed in Table 2.

To have a fair comparison, the same population size N
and MAX_FEs are used for all algorithms. The N should be
small because of the double-loop attractionmodel in FA. The
N andMAX_FEs are set to 20 and 5.0E+05, respectively. By
the suggestions ofYuet al. (2014, 2015), bothβ0 andγ are set
to 1 for VSSFA andWSSFA. For the standard FA and RaFA,
α = 0.2. The parameter αmin is set to 0.04 for WSSFA (Yu
et al. 2014). In MFA, the βmin is equal to 0.2 (Fister et al.
2012). For CFA, the Gauss map is used for updating the
parameter β (Gandomi et al. 2013). For NSRaFA, the initial
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Table 3 Mean best fitness
values achieved by the standard
FA, VSSFA, WSSFA, MFA,
CFA, RaFA, and NSRaFA

Function FA VSSFA WSSFA MFA CFA RaFA NSRaFA
Mean Mean Mean Mean Mean Mean Mean

f1 6.67E+04 5.84E+04 6.34E+04 1.56E–05 3.27E–06 5.36E–184 4.11E–110

f2 5.19E+02 1.13E+02 1.35E+02 1.85E–03 8.06E–04 8.76E–05 1.35E–55

f3 2.43E+05 1.16E+05 1.10E+05 5.89E–05 1.24E–05 4.91E+02 1.59E–109

f4 8.35E+01 8.18E+01 7.59E+01 1.73E–03 8.98E–04 2.43E+00 1.88E–55

f5 2.69E+08 2.16E+08 2.49E+08 2.29E+01 2.06E+01 2.92E+01 2.85E+01

f6 7.69E+04 5.48E+04 6.18E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f7 5.16E+01 4.43E+01 3.24E–01 1.30E–01 9.03E–02 5.47E–02 4.41E–16

f8 –1563.4 –1854.6 –2012.8 –7634.35 –8207.62 –12066.3 –11963.6

f9 3.33E+02 3.12E+02 3.61E+02 6.47E+01 5.27E+01 2.69E+01 0.00E+00

f10 2.03E+01 2.03E+01 2.05E+01 4.23E–04 4.02E–04 3.61E–14 5.89E–16

f11 6.54E+02 5.47E+02 6.09E+02 9.86E–03 7.91E–06 0.00E+00 0.00E+00

f12 7.16E+08 3.99E+08 6.18E+08 5.04E–08 8.28E–09 4.50E–05 1.57E–32

w/ t/ l 12/0/0 12/0/0 12/0/0 10/1/1 10/1/1 8/2/2 –

The best results among the seven algorithms are shown in bold

α, βmin , and βmax are set to 0.5, 0.3, and 0.9, respectively. All
the experiments are conducted 30 times, and themean results
are reported.

4.3 Comparison of the quality of the final solutions

Table 3 presents the experimental results achieved by the
standard FA, VSSFA, WSSFA, MFA, CFA, RaFA, and
NSRaFA, where “Mean” represents the mean best fitness
value. The comparison results between NSRaFA and other
algorithms are summarized as w/t/ l, which means that
NSRaFA wins in w functions, ties in t functions and loses
in l functions, compared with its competitors. As seen, the
standard FA, VSSFA, and WSSFA could hardly achieve
promising solutions on all test functions, and the proposed
NSRaFA obtains much better solutions than them. Recent
studies show that both VSSFA and WSSFA work well on
some low-dimensional benchmark functions (Yu et al. 2014,
2015). It seems that the problem dimension size seriously
affects their performance.

Compared with the standard FA, MFA and CFA can find
promising solutions onmost test functions. InMFA, the para-
metersα and β are dynamically adjusted. In CFA, theβ value
is updated by a chaotic map function. It demonstrates that the
performance of FA greatly depends on its parameter settings.
NSRaFA performs better than MFA and CFA on ten func-
tions, while they achieve better results than NSRaFA on f5.
For f6, MFA, CFA, RaFA, and NSRaFA can converge to the
global optimum.

From the comparison of NSRaFA with RaFA, both of
them employ the random attraction model. It can be seen
that NSRaFA and RaFA achieve better results than the other
five FA variants. In fact, the RaFA is a hybridization ofMFA,
the random attraction model and a Cauchy mutation opera-

tor (Wang et al. 2016). NSRaFA outperforms RaFA on eight
functions, while RaFA finds better solutions on two func-
tions. For f6 and f11, they obtain the same results.

Table 4 gives the mean computational time of the com-
pared FA variants. All algorithms are run on an Intel Core
i7-4510U CPU 2.60 GHz with 8.0 GB Memory in the Win-
dows 7 Operating System. From the total average time, both
MFA and RaFA almost have the same cost. WSSFA and
VSSFA cost much more time than the standard FA, CFA,
MFA, and RaFA. It seems that NSRaFA costs the most
computational time. The main reason is that the neighbor-
hood search used in NSRaFA costs too much computational
time during the search. This is confirmed by calculating
the computational time of NSRaFA without neighborhood
search. If we decrease the frequency of conducting the neigh-
borhood search, we may reduce the computational cost of
NSRaFA and maintain its good performance at the same
time.

Figure 4 lists the the convergence graphs of NSRaFA and
the other six FA variants on all test functions. As shown,
NSRaFA converges faster than other algorithms on most
functions. Especially on f7, f9, and f12, NSRaFA achieves
promising solutions at the beginning of the search stage. For
f1, RaFA shows a faster convergence rate than NSRaFA. f1
is a Sphere function, which is unimodal. Too many neigh-
borhood search operations affect the convergence rate of
NSRaFA. As mentioned before, RaFA combines MFA, the
random attraction model, and a Cauchy mutation operator.
Our experiments confirm that RaFA without Cauchy muta-
tion converges faster than the full RaFA. For f8, RaFA is
slightly faster than NSRaFA. On this function, there are
many deep local minima being far from the global opti-
mum. It seems that only the Cauchy mutation is beneficial
for escaping from such deep local minima, while the other
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Table 4 Mean computational time (in seconds) achieved by the standard FA, VSSFA, WSSFA, MFA, CFA, RaFA, NSRaFA, and NSRaFA without
neighborhood search

Function FA VSSFA WSSFA MFA CFA RaFA NSRaFA NSRaFA without
neighborhood search

Mean Mean Mean Mean Mean Mean Mean Mean

f1 0.53 0.61 1.24 0.53 0.58 0.72 1.69 0.58

f2 0.98 1.07 1.68 0.98 1.01 1.06 2.17 1.05

f3 1.42 1.45 2.14 1.43 1.49 1.37 2.59 1.08

f4 0.78 0.83 1.53 0.81 0.87 0.73 2.05 0.43

f5 0.63 0.67 1.39 0.58 0.60 0.53 1.98 0.26

f6 0.62 0.63 1.36 0.39 0.42 0.47 2.14 0.24

f7 1.78 1.86 2.49 1.81 1.87 2.06 2.97 1.89

f8 1.62 1.65 2.31 1.64 1.71 1.49 2.85 1.30

f9 1.26 1.29 1.92 1.26 1.30 1.15 2.64 0.83

f10 1.40 1.41 2.11 1.40 1.39 1.30 2.70 1.03

f11 1.56 1.52 2.26 1.51 1.56 1.45 2.78 1.05

f12 2.83 2.87 3.53 2.01 2.12 1.97 3.31 1.62

Total average 1.28 1.32 2.00 1.20 1.24 1.19 2.49 0.95

two neighborhood search operators do not work. Though
NSRaFA and RaFA can find the global optimum, RaFA is
slightly faster than NSRaFA.

To compare the performance of multiple algorithms on
the benchmark set, Friedman test is conducted (García et al.
2010). Table 5 presents themean rankings of the standard FA,
VSSFA,WSSFA, MFA, CFA, RaFA, and NSRaFA. The best
rank (with the lowestmean rankvalue) is shown inbold. From
the results, the performance of the seven FA variants can be
sorted by the mean rank into the following order: NSRaFA,
RaFA, CFA, MFA, VSSSFA, WSSFA, and the standard FA.
The best mean rank is obtained by the proposed NSRaFA.
It demonstrates that NSRaFA outperforms the other six FA
variants.

4.4 Comparison of the robustness

The above experiment compares the quality of the final solu-
tions achieved by the seven FA variants. In the following
experiment, we investigate the robustness of these algo-
rithms. A threshold value of the objective function is selected
for each test function. The detailed threshold values are listed
in the second column of Table 6. The stopping criterion is
to find a fitness value smaller than the predefined threshold
before reaching the maximum number of fitness evaluations
(MAX_FEs).

We compare the robustness of each algorithm by measur-
ing the successful running rate (SR). The SR is defined by

SR = n_suc_run

n_run
, (18)

where n_run is the total number of runs and n_suc_run is
the number of successful runs. A successful run means that
the algorithm successfully converges to the threshold value
within the predefined MAX_FEs.

In this experiment, the parameters of the standard FA,
VSSFA, WSSFA, MFA, CFA, RaFA, and NSRaFA employ
the same settings as described in Sect. 4.2. Table 6 presents
the results of SR for each algorithm. The highest SR among
the seven algorithms is shown in bold. From the results, the
standard FA, VSSFA, and WSSFA fail to solve all test func-
tions. Both MFA and CFA achieve 100% SR on only one
function ( f6).MFA successfully solves f3 in 2 out of 30 runs,
while CFA obtains 25 successful runs. For the rest of the ten
functions, they cannot converge to the threshold values in all
runs. RaFA achieves 100% SR on five functions, but it also
fails to solve another five functions f3– f5, f7, and f9). For
the rest f2 and f12, RaFA can successfully solve them in 7
and 20 runs, respectively. NSRaFA obtains 100% SR on all
functions except for f5. On this function, all algorithms fall
into the local minima.

From the total average SR, the standard FA, VSSFA, and
WSSFA achieve the lowest SR (0%), because they fail to
solve all functions. MFA and CFA fail to solve most func-
tions, and they obtain 8.89 and 15.28%, respectively. By
combiningMFAand other strategies, RaFAachieves a signif-
icant improvement on SR (49.17%). The proposed NSRaFA
successfully solvesmost functions and obtains the highest SR
(91.67%). However, it is worth pointing out that the SR will
largely depend on the criterion used for determining what
a successful run is. Different criteria may result in different
rates.
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(a) Sphere (f1) (b) Schwefel 2.22 (f2) (c) Schwefel 1.2 (f3)

(d) Schwefel 2.21 (f4) (e) Rosenbrock (f5) (f) Step (f6)

(g) Quartic with noise (f7) (h) Schwefel 2.26 (f8) (i) Rastrigin (f9)

(j) Ackley (f10) (k) Griewank (f11) (l) Penalized (f12)

Fig. 4 The convergence curves of the standard FA, VSSFA, WSSFA, MFA, CFA, RaFA, and NSRaFA on all test functions

4.5 Effects of different strategies

The proposed NSRaFA employs three strategies: a dynamic
parameter adjustmentmechanism, a randomattractionmodel,
and three neighborhood search operators. To investigate the

effects of these three strategies, we compare the performance
of FA with different strategies. This is helpful to verify
the effectiveness of these strategies separately. The involved
algorithms are listed as follows.
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Table 5 Mean ranks achieved
by Friedman test for the seven
FA variants

Algorithm Mean rank

NSRaFA 1.50

RaFA 2.50

CFA 2.54

MFA 3.46

VSSFA 5.38

WSSFA 5.83

FA 6.79

The best rank (with the lowest
mean rank value) is shown in
bold

– FA + dynamic parameter adjustment method.
– FA + dynamic parameter adjustment method + random
attraction model.

– FA + dynamic parameter adjustment method + neighbor-
hood search.

– The proposed NSRaFA (FA + three strategies).

In the experiments, all algorithms use the same parameter
settings as described in Sect. 4.2. Table 7 presents the mean
best fitness values achieved by FA with different strategies.
From the results of the standard FA (see Table 3) and FA +
dynamic parameter adjustment method, the dynamic para-
meter adjustment method is helpful to achieve significant

Table 6 Results for successful
running rate (SR) under a
predefined accuracy level
(threshold)

Function Threshold FA VSSFA WSSFA MFA CFA RaFA NSRaFA
SR (%) SR (%) SR (%) SR (%) SR (%) SR (%) SR (%)

f1 1.00E–10 0 0 0 0 0 100 100

f2 1.00E–05 0 0 0 0 0 23.33 100

f3 1.00E–05 0 0 0 6.67 83.33 0 100

f4 1.00E–05 0 0 0 0 0 0 100

f5 1.00E–05 0 0 0 0 0 0 0

f6 1.00E–10 0 0 0 100 100 100 100

f7 1.00E–02 0 0 0 0 0 0 100

f8 –1.00E+04 0 0 0 0 0 100 100

f9 1.00E–05 0 0 0 0 0 0 100

f10 1.00E–10 0 0 0 0 0 100 100

f11 1.00E–10 0 0 0 0 0 100 100

f12 1.00E–10 0 0 0 0 0 66.67 100

Total average 0 0 0 8.89 15.28 49.17 91.67

The best results among the seven algorithms are shown in bold

Table 7 Mean best fitness values achieved by FA with different strategies

Function FA + dynamic parameter
adjustment method

FA + dynamic parame-
ter adjustment method +
random attraction model

FA + dynamic parame-
ter adjustment method +
neighborhood search

NSRaFA (FA + three
strategies)

Mean Mean Mean Mean

f1 5.69E–07 3.41E–213 1.63E–07 4.11E–110

f2 3.79E–04 1.01E–54 5.26E–05 1.35E–55

f3 1.21E–06 2.96E+03 8.58E–06 1.59E–109

f4 2.87E–04 2.03E–01 1.75E–04 1.88E–55

f5 2.31E+01 2.91E+01 2.87E+01 2.85E+01

f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f7 8.66E–02 4.32E–02 1.38E–06 4.41E–16

f8 –6509.1 –6627.5 –11366.2 –11963.6

f9 3.89E+01 3.83E+01 2.51E–07 0.00E+00

f10 1.93E–04 1.82E–14 3.88E–05 5.89E–16

f11 1.69E–06 0.00E+00 4.79E–08 0.00E+00

f12 1.86E–09 3.56E–32 5.36E–04 1.57E–32

w/ t/ l 10/1/1 9/1/2 11/1/0 –

The best results among the comparisons are shown in bold
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improvements on all test functions. The random attraction
model improves the performance of FA+ dynamic parameter
adjustment method on nine functions. Especially for f1– f2
and f10– f12, FA + dynamic parameter adjustment method +
randomattractionmodel achievesmuchbetter results thanFA
+ dynamic parameter adjustment method. The neighborhood
search improves the performance of FA+ dynamic parameter
adjustment method on eight functions. Especially for f7– f9,
FA+ dynamic parameter adjustmentmethod + neighborhood
search performs much better than FA + dynamic parameter
adjustmentmethod. It seems that the randomattractionmodel
is not suitable for f3 and f4, while the neighborhood search
obtains slight improvements.

From the above analysis, the random attraction model or
the neighborhood search can improve the performance of FA
+ dynamic parameter adjustment method on most test func-
tions. When combining FA with three strategies, NSRaFA
(FA + three strategies) achieves better results than FA +
dynamic parameter adjustment method on ten functions.
For FA + dynamic parameter adjustment method + ran-
dom attraction model, introducing the neighborhood search
significantly improves the quality of final solutions on f3,
f4, and f7– f10. The random attraction model helps FA
+ dynamic parameter adjustment method + neighborhood
search to obtain significant improvements on f2– f4, and f7–
f12.
The above results demonstrate that FA with the proposed

one or more strategies can significantly improve the per-
formance of the standard FA. Each strategy has its own
effects and plays an important role in the search process. By
hybridization of FA and the proposed strategies, NSRaFA
achieves a superior performance.

4.6 Effects of population size

In this section, we investigate the effects of population size
(N ) on the performance of NSRaFA. In the experiments, N
is set to 20, 30, and 40, respectively. For other parameters,
we use the same settings as described in Sect. 4.3.

Table 8 presents the mean best fitness values achieved by
NSRaFA under different population size. From the results,
NSRaFA with a small N achieves better solutions than
NSRaFA with a large one. The population size seriously
affects the accuracy of the final solutions for unimodal func-
tions, such as f1– f4 and f7. For multimodal functions,
NSRaFAwith different N values obtain similar performance.

5 Conclusion

This paper presents an improved FA variant called randomly
attracted FA with neighborhood search (NSRaFA). The new

Table 8 Results achieved by NSRaFA under different population sizes

Function N = 20 N = 30 N = 40

f1 4.11E–110 5.97E–110 3.81E–56

f2 1.35E–55 7.67E–38 2.98E–29

f3 1.59E–109 3.25E–72 2.11E–56

f4 1.88E–55 1.17E–37 6.76E–29

f5 2.85E+01 2.84E+01 2.85E+01

f6 0.00E+00 0.00E+00 0.00E+00

f7 4.41E–16 6.29E–13 2.62E–10

f8 –11963.6 –11814.4 –11224.7

f9 0.00E+00 0.00E+00 0.00E+00

f10 5.89E–16 5.89E–16 5.89E–16

f11 0.00E+00 0.00E+00 0.00E+00

f12 1.57E–32 1.57E–32 1.89E–32

approach employs three strategies: (1) a dynamic parameter
adjustment mechanism; (2) a random attraction model; and
(3) three neighborhood search operators. The first strategy
aims to automatically adjust the control parameters α and β,
and avoidmanual parameter settings. The second one focuses
on accelerating the convergence rate and reducing the com-
putational time complexity. The last strategy defines a new
neighborhood search operation for brighter fireflies (better
solutions). Searching the neighborhoods of these brighter
fireflies is helpful to find better candidate solutions.

Experiments are conducted on 12 well-known bench-
mark functions to verify the performance of our approach
NSRaFA. Results show that NSRaFA achieves much bet-
ter solutions than the standard FA, VSSFA, WSSFA, MFA,
CFA, and RaFA on the majority of test functions. The com-
parison of the robustness demonstrates that NSRaFA is the
most robust algorithm among all seven FA variants.

The NSRaFA is a hybrid of FA and three proposed strate-
gies. Results show that each strategy has different effects and
it plays a significant role for finding good candidate solu-
tions. Moreover, FA with more strategies can achieve better
performance than FA without these. For example, FA with
two strategies (the random attraction model or the neighbor-
hood search) is better than FA with the dynamic parameter
adjustment method. It also confirms the effectiveness of our
proposed strategies. Moreover, it seems that the population
size seriously affects the accuracy of final solutions only for
unimodal functions.

The parameters α and β can seriously affect the per-
formance of FA. To avoid manual settings, we designed a
dynamic parameter adjustment mechanism, which does not
consider any search experience of fireflies. By introducing
these search experiences, we may construct a self-adaptive
parameter strategy to guide the search. This will be investi-
gated in the future work.
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adapting control parameters in differential evolution: a compara-
tive study on numerical benchmark problems. IEEE Trans Evolut
Comput 10(6):646–657

ChandrasekaranK,SimonSP,PadhyNP (2013)Binary real codedfirefly
algorithm for solving unit commitment problem. Inf Sci 249:67–
84

Chen BJ, Shu HZ, Coatrieux G, Chen G, Sun XM, Coatrieux JL (2015)
Color image analysis by quaternion-type moments. J Math Imag-
ing Vis 51(1):124–144

Chhikara RR, Singh L (2015) An improved discrete firefly and t-Test
based algorithm for blind image steganalysis. In: The 6th interna-
tional conference on intelligent systems, modelling and simulation
(ISMS), pp 58–63

Coelho LS, Mariani VC (2013) Improved firefly algorithm approach
applied to chiller loading for energy conservation. Energy Build
59:273–278

Das S, Abraham A, Chakraborty U, Konar A (2009) Differential evo-
lution using a neighborhood-based mutation operator. IEEE Trans
Evol Comput 13(3):526–553

Dorigo M,Maniezzo V, Colorni A (1996) The ant system: optimization
by a colony of cooperating agents. IEEE Trans Syst Man Cybern
Part B Cybern 26:29–41

Duang H, Luo Q (2015) New progresses in swarm intelligence-based
computation. Int J Bio-Inspir Comput 7(1):26–35

Farahani SM, Abshouri AA, Nasiri B, Meybodi MR (2011) A Gaussian
firefly algorithm. Int J Mach Learn Comput 1(5):448–453

Fister Jr I,YangXS, Fister I, Brest J (2012)Memetic firefly algorithm for
combinatorial optimization. In: Bioinspired optimization methods
and their applications (BIOMA 2012), pp 1–14

Fister I Jr, Fister I, Yang XS, Brest J (2013) A comprehensive review
of firefly algorithms. Swarm Evolut Comput 13:34–46

Fister I, Yang XS, Brest J, Fister I Jr (2013) Modified firefly algorithm
using quaternion representation. Exp SystAppl 40(18):7220–7230

Fister I Jr, Yang XS, Fister I, Brest J, Fister D (2013) A brief review of
nature-inspired algorithms for optimization. Elektrotehniǎki Vest-
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