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Abstract Accurate and fast segmentation and volume estima-
tion of the prostate gland in magnetic resonance (MR) images
are necessary steps in the diagnosis, treatment, and monitoring
of prostate cancer. This paper presents an algorithm for the
prostate gland volume estimation based on the semi-
automated segmentation of individual slices in T2-weighted
MR image sequences. The proposed sequential registration-
based segmentation (SRS) algorithm, which was inspired by
the clinical workflow during medical image contouring, relies
on inter-slice image registration and user interaction/
correction to segment the prostate gland without the use of
an anatomical atlas. It automatically generates contours for
each slice using a registration algorithm, provided that the user
edits and approves the marking in some previous slices. We
conducted comprehensive experiments to measure the perfor-
mance of the proposed algorithm using three registration
methods (i.e., rigid, affine, and nonrigid). Five radiation on-
cologists participated in the study where they contoured the
prostate MR (T2-weighted) images of 15 patients both manu-
ally and using the SRS algorithm. Compared to the manual
segmentation, on average, the SRS algorithm reduced the
contouring time by 62 % (a speedup factor of 2.64×) while

maintaining the segmentation accuracy at the same level as the
intra-user agreement level (i.e., Dice similarity coefficient of
91 versus 90 %). The proposed algorithm exploits the inter-
slice similarity of volumetric MR image series to achieve
highly accurate results while significantly reducing the
contouring time.
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Introduction

Prostate cancer is the most common cancer in men. One in six
men in Canada is diagnosed with prostate cancer during their
lifetime [1]. In most cases, however, the diagnosis of prostate
cancer usually leads to active monitoring of tumor growth for
a long period of time. A potential treatment may include sur-
gery or radiation therapy. In all cases of diagnosis, treatment
and monitoring of prostate cancer, accurate localization and
segmentation of the prostate gland and estimation of prostate
gland volume in images may be required. Although CT im-
ages are generally used for radiation therapy, in many cases,
however, MR images are also used for accurate image seg-
mentation because MR imaging is a safer and less invasive
method compared to CT scans. As well, the use of MRI could
also potentially reduce inter-user variability [2]. Recent stud-
ies show that MR images can be used for dose calculation in
cancer treatment, which might lead to the complete elimina-
tion of the requirement for CT [3, 4].

In order to estimate the volume of the prostate gland, each
slice of the volume dataset has to be marked so the boundary
of the prostate gland can be labeled. Manual segmentation of
the prostate gland is a tedious task as the contouring process of
a patient’s volume dataset can take several minutes. The long
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time required to process the volume datasets of prostate im-
poses a serious burden on the healthcare system and prevents
timely patient access to proper care. The availability of a seg-
mentation algorithm that reduces the time spent manually
contouring the prostate in the clinical workflow is essential
and could translate to reduced cost.

The aim of the current study was to develop an algorithm
that exploits inter-slice similarity to segment the prostate
gland in MR images. Our proposed algorithm was inspired
by the clinical workflow during medical image contouring
where a clinician usually inspects the automatic or semi-
automatic generation of contours to correct and approve them
if necessary (e.g., therapy planning). Our algorithm benefits
from the inter-slice similarity of images in a volume dataset to
propagate a given label (i.e., the segmentation result) to neigh-
boring slices using image registration.

The outline of the remainder of this paper is as follows: In
the BRelated Work^ section, the related work on the segmen-
tation of prostate images is presented. In the BProposed
Algorithm^ section, we present our proposed algorithm for
semi-automatic segmentation of the prostate gland in MR im-
ages. BMaterials and Results^ and BDiscussion^ sections pres-
ent the performance results and the discussion for the pro-
posed algorithm, respectively. Finally, the BConclusion^ sec-
tion concludes the paper.

Related Work

In terms of related work, our algorithm can be compared to
atlas-based segmentation (ABS) algorithms [5–9], which are a
class of popular approaches in the literature for prostate seg-
mentation. Briefly, this method involves contouring the de-
sired anatomy (i.e., prostate) by an expert user (or a clinician)
and storing the original images with the corresponding labels
(i.e., segmented binary image) in a database known as an
Batlas^. To segment the prostate in a target image, all of the
images in the atlas are registered to the target image using an
image registration method. The registered images in the atlas
are then compared to the target image using an image similar-
ity matching technique to find the most similar registered im-
age in the atlas. Finally, a segmented image is produced by
applying the image transformation function to the segmented
binary image (label) that corresponds to the most similar im-
age in the atlas. Different variations of ABS algorithms have
been proposed to increase the accuracy of the results and/or
reduce the computational cost. In the following, we review
several methods from related work.

Klein et al. [5] presented a semi-automatic algorithm based
on atlas matching for the segmentation of the prostate gland in
MR images. The algorithm used an affine followed by a non-
rigid registration method to register all of the images in the
atlas with the target image, and then, the most similar

registered images to the target image were selected. The cor-
responding image transformations were applied to the original
segmented images (or labels) to produce the registered labels
which were then averaged together and thresholded to gener-
ate the final label. In another study, Klein et al. [6] presented
an improved version of their previous method [5] in which the
registered labels were fused using majority voting and simul-
taneous truth and performance level estimation (STAPLE)
algorithm [10] to generate a consensus label. Dowling et al.
[7] proposed a probabilistic atlas-based method where a vol-
ume dataset was selected as the initial atlas. The remaining
volume datasets with labels were registered twice against the
initial atlas via rigid and affine transformations and then using
rigid, affine, and nonrigid transformations. A new atlas was
generated at the end of each step by averaging the registered
images and labels. To segment a target image, the average
atlas was registered against it using affine and nonrigid regis-
tration methods. The transformation was then applied to the
probability map of the prostate and the result was thresholded
to generate the result label. Langerak et al. [8] proposed a
multi-atlas-based segmentation method for prostate MR im-
ages based on an iterative label fusion approach, which was
somewhat similar to [6]. First, all of the atlas images were
registered against the target image to obtain a set of registered
labels, and the registered labels were then fused together using
a weighted majority voting method. Next, the overlap of each
contour was calculated against the fused label, and labels with
low overlaps were dropped and the fused labels were
recalculated. Martin et al. [9] proposed a probabilistic atlas-
based segmentation method for prostate MR images. The atlas
was created by registering images with a manually picked
reference image. Next, a mean image was created by averag-
ing all of the registered images. Each image was registered
against the mean image to produce a deformed label of the
image. The deformed labels were then averaged to generate a
probability map of the labels. To segment an image, the mean
image was registered to it and the probability map of the labels
was deformed using the registration transform. The result la-
bel was modified using a deformable model to better match
the prostate boundaries.

Cheng et. al [11] proposed two registration guidedmethods
for semi-automatic segmentation of the prostate gland in MR
images. In the first method, the user manually contours the
base, middle, and apex slices on the three planes (axial, sagit-
tal, and coronal). A nonrigid registration propagates the man-
ual contours from the middle slice toward the base and apex
and vice versa depending on the distance from the base and
apex. In the second method, before applying the registration,
the images are first filtered to remove speckle noise and en-
hance the edge map of the image. It also uses a fuzzy C-means
clustering method to decompose the image into different
fuzzy-C classes. The result of the registration (deformed bina-
ry mask) is used to combine these classes of the image into a
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single binary mask, and then, morphology operations (dilation
and erosion) are applied to refine the segmentation result. The
algorithm presented in [11] is similar to the SRS algorithm
proposed in this paper where both use inter-slice registration
to propagate manual contours throughout the prostate volume.
One difference is that the method in [11] only uses nonrigid
registration with post-processing where the SRS algorithm
uses rigid, affine, and nonrigid registrations with no post-
processing to evaluate the performance of the algorithm. As
it will be seen in BMaterials and Results^, the SRS algorithm
could achieve an accuracy comparable to the intra-user agree-
ment using rigid registration with no post-processing which
requires much less computational time compared to the ap-
proach used in [11].

In the clinical workflow for therapy, it is the norm that
automatically or semi-automatically generated labels are ex-
amined and corrected by a clinician such as a radiation oncol-
ogist. The clinical ramifications of not checking contours in-
clude missing a target (less effective therapy) or increased
toxicity if the target is over-contoured. The Radiation
Therapy Oncology Group (RTOG) recommends contouring
guidelines for different organs/cases [12]. In all cases, it is
assumed that a clinician is responsible for contouring, rather
than an automatic segmentation algorithm.

Our proposed algorithm was inspired by clinical workflows
for monitoring and treatment of prostate cancer where in the
former, the volume estimation of the prostate gland is used for
surveillance of the disease (e.g., PSA density calculation) and
in the latter, the precise segmentation of the prostate gland in all
slices are required for therapy planning, in which case the cli-
nician is responsible for the segmentation results. Instead of
using a pre-generated atlas which is costly to create, the initial
labels are generated and/or corrected by an expert user on the
fly, before producing the labels of the remaining images in the
volume dataset. Our results show that using expert knowledge
during the segmentation process leads to an average accuracy
of 91 % Dice similarity coefficient (DSC), which is similar to
the intra-user agreement level (i.e., 90 % DSC) while reducing
the overall contouring time by 62 %.

In this paper, we propose a sequential registration-based seg-
mentation (SRS) algorithm for prostate MRI. Using the SRS
algorithm, the user initializes the segmentation by contouring
the first slice. The SRS algorithm then generates the result for
the next slice(s). Depending on the configuration, the user may
choose to correct the segmentation result for each slice or they
may skip one ormore slices before contouring the next slice.We
evaluate and report the speedup factors for the SRS algorithm
with user initialization and correction compared to manual
contouring of the same datasets. This gives a clear picture of
the effectiveness of the algorithm in practice. For evaluation
purposes, the manual contouring of five clinicians was used
where intra-user variability was reported and used as a baseline
for performance evaluation of the SRS algorithm.

Proposed Algorithm

The contouring of medical images for prostate cancer is usu-
ally performed for prostate cancer detection and monitoring
[13] and treatment planning for radiation therapy [14]. During
the monitoring of the disease, prostate volume estimation is
used for PSA density calculation, which is a biomarker for
prostate cancer diagnosis. In treatment planning, the generated
labels are used for dose calculations and actual radiation ther-
apy, so the clinician usually contours the slices one by one to
ensure high accuracy of individual labels. Planning is gener-
ally performed using CT scans, but the segmentation and reg-
istration of MR images may also be required when it is desir-
able to fuse two modalities. Our proposed algorithm, i.e., the
sequential registration-based segmentation algorithm or SRS,
was inspired by these clinical workflows where in diagnosis
and monitoring the disease, the volume of prostate cancer can
be estimated with minimal user intervention and in treatment
planning, each slice segmentation result is verified and
corrected by the clinician to ensure the accuracy of contours.
In both scenarios, the SRS algorithm relies on the user inter-
vention to generate the label of a given slice. The amount of
user intervention can be chosen depending on the clinical
workflow. For treatment planning, the clinician would choose
to edit/correct any generated label whereas for diagnosis and
monitoring, they may choose to skip one or more slices before
manually contouring a slice. As it will be discussed in the
BResults for the SRS Algorithm^ section, the SRS algorithm
can produce acceptable segmentation accuracy while it speeds
up the segmentation with respect to manual contouring
significantly.

The images in an atlas used by ABS methods may belong
to different series, different studies, or even different patients.
ABSmethods generally assume that registrationwill eliminate
the differences between images (i.e., atlas images and the tar-
get image). However, MR images contain a variety of details
that can make the registration task difficult if the images be-
long to different patient data. On the other hand, images in a
volume dataset share a large amount of information, especially
those that are adjacent to each other, because they represent
different cross-sections of the same volumetric object. In this
scenario, image registration should yield a better result with-
out any need for a large atlas of images. This is the underlying
concept of the SRS algorithm proposed in this paper.

The proposed algorithm registers images in a given volume
dataset against each other, thereby eliminating the need to use
an atlas. It can use rigid, affine [15, 16], or nonrigid registra-
tion methods to generate labels. For the nonrigid registration,
demon algorithm [17] was used since it is a well-known non-
rigid registration algorithm that has been successfully used in
registering medical images in different modalities [18, 19]. In
our experiments, an open-source implementation [20] was
used for rigid, affine, and demon registration algorithms.
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The proposed SRS algorithm is presented in two formats. In
the first format, which is suitable for treatment planning (BSRS
Algorithm with Post-editing^), it is assumed that the expert user
corrects the result for each slice. In the second format, which is
suitable for prostate volume estimation used for diagnosis and
monitoring (BSRS AlgorithmWithout Post-editing^), the expert
user may skip contouring one or a few slices between a given
pair of slices that have been contoured by the user.

SRS Algorithm With Post-editing

In this configuration, suitable for treatment planning, it is as-
sumed that the user will correct any segmentation result before
moving to the next slice. We consider a set of n+1 slices of the
prostate gland in an MR sequence {IK},K=0,…,n with a slice
thickness of Th. The SRS algorithm can be summarized as
follows:

1. Initialization: An expert user contours the prostate for I0 in
a MR image sequence, which is the first slice (i.e., base
slice). This yields the label for the first slice L0. The algo-
rithm finds the ROI based on the user label around the
prostate. Based on an assumption that the prostate gland
boundary in the second slice is probably larger than the
one in the base slice, the ROI is slightly enlarged (i.e., by
30 %) for use in the next slice I1 of the MR image se-
quence1. The largest ROI of the two is used when regis-
tering each slice with the next.

2. Image registration: At each step i−1, the current slice, Ii−1,
is registered with the next, Ii, using a registration method
as follows:

Ti−1 ¼ Reg I i−1; I ið Þ ð1Þ
where Reg is a registration method (rigid, affine, or nonrig-
id) and i ∈ {1, . . . , n}. The computed registration transfor-
mation, Ti−1, is then applied to the label of the current slice,
Li=1 to generate the registered deformed label, Li

r, which is
the auto-generated label for the next slice, Ii.

Lri ¼ Ti−1 Li−1ð Þ ð2Þ

3. User intervention: In this step, the expert user modifies
label Li

r generated for slice Ii, if necessary. The edited
(corrected) label for slice Ii isLi. A new ROI is built after

the user corrects the current slice. A linear interpolation
method is used to find an ROI for Ii+1 in the image se-
quence based on the ROIs of Ii and Ii−1.

4. Repeat steps 2 and 3: The algorithm continues by repeat-
ing steps 2 and 3 until the end of the image sequence (i.e.,
i=n).

SRS Algorithm Without Post-editing

In this configuration (suitable for prostate volume estimation
used for diagnosis and monitoring), the user may skip z slices
before contouring a slice manually. We consider a set of n+1
slices of the prostate gland in a MR sequence {IK},K=0,…,n
with a slice thickness of Th. The SRS algorithm can be sum-
marized as follows:

1. Initialization: This step is similar to step 1 in SRS with
post-editing (BSRS Algorithm with Post-editing^).

2. Set i=0.
3. Starting from I j and moving forward by z slice (i.e., I j+z),

each image is registered to the next image as follows:

Tr1
j−1 ¼ Reg I j−1; I j

� � ð3Þ

where Reg is a registration method (rigid, affine, or non-
rigid) and j ∈ {i+1, . . . , i+z}. At each step j, the computed
registration transformation, Tj− 1

r1 is applied to slice I j−1

and its label Lj−1, which generates the registered image,
Ij
r1, and the deformed label, Lj

r1 which is the result label for
the next slice, Ij:

I r1j ¼ Tr1
j−1 I j−1
� � ð4Þ

Lr1j ¼ Tr1
j−1 Lr1

j−1

� �
ð5Þ

4. Increment i: i=i+z+1.
5. The expert user contours the prostate in slice Ii manually.
6. Repeat steps 3 and 4: The algorithm continues by repeat-

ing steps 3 and 4 until the end of the image sequence (i.e.,
i>=n).

Materials and Results

This section presents the test images used in the experiments
and the performance evaluation measures. All three registra-
tion methods (i.e., rigid, affine, and nonrigid) were used to
generate results for MR images using SRS both with and
without post-editing.

1 The entire image is not used as the ROI because registration usually
gives a poor result in this case. Therefore, the ROI is usually limited by
the user before the registration starts [5, 6]. SRS was designed specifically
for the prostate glandwhere the cross section of the prostate is small at the
base and the apex and it usually becomes larger as we approach the mid-
gland region. We used a slightly enlarged ROI because the second slice
was more likely to contain a larger portion of the prostate than the first
slice when we navigated from the base to the apex. Thus, the second slice
might not cover the whole prostate if we use the same ROI. The 30%ROI
enlargement was selected based on the empirical data.
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Prostate MR Images

TheMR images (T2-weighted with endorectal coil) used in this
study were derived from an online database (http://
prostateMRimageDatabase.com), which contains MR volume
datasets provided by Brigham and Women’s Hospital, the
National Center for Image-Guided Therapy, and Harvard
Medical School. The database was created with proper
Internal Review Board (IRB) approval. The pulse sequence
groups in the Digital Imaging and Communications in
Medicine (DICOM) headers of the T2-weighted images were
marked as fast relaxation fast spin echo-accelerated (FRFSE-
XL). This dataset contained images with the slice thickness of
3 mm and varying contrast levels and signal-to-noise charac-
teristics. All of the images were captured with a depth of 16 bits
and with 512×512 pixel size. Complete descriptions of the 15
MRI volume datasets considered in the current study are pro-
vided in Table 1. Five radiation oncologists manually
contoured the MR images for all 15 patients. The same clini-
cians also edited the segmentation results in post-editing con-
figuration as described in BSRS Algorithm with Post-editing.^
The corrected results were compared to the initial manual seg-
mentation results to calculate intra-user variability (or agree-
ment). There were 2 weeks gap between the manual and
semi-automatic segmentation experiments. To generate
ground-truth segmentations, the manual contours of all five
experts were combined using the STAPLE algorithm [10].
For each slice, this produced the consensus contour which
was then used as the ground truth to evaluate the performance
of the SRS algorithm. The image dataset in DICOM format and
manual markings were provided by Segasist Technologies. The
same dataset has been a part of multiple algorithm and software
validation processes as reported in the literature [21, 22].

Volume Accuracy

The accuracy of slices was measured by comparing the semi-
automatically generated labels with the ground-truth images
using Dice similarity coefficient (DSC), which is defined as:

DSC ¼ 2jBg∩Bsj
jBgj þ jBsj ð6Þ

where Bg and Bs are ground-truth and semi-automatically
generated labels, respectively. ∩ represents the shared infor-
mation in the two binary images. To calculate the volume
accuracy, we used DSC (Eq. 6) to calculate the DSC over
the entire 3D prostate.

Estimation of the Prostate Volume

After the slices of a MR volume dataset have been auto-
segmented or manually contoured, the area of each slice,

A={Ai, |i ∈ {1, . . ., n}}, is calculated, where n is the number
of slices in a volume dataset where a portion of the prostate is
visible. The estimated volume of the prostate in each volume
dataset or image sequence is then calculated based on Ai and
the slice thickness Th as follows [23]:

V ¼ Th� A1 þ AN

3
þ
X N−1

i¼2
Ai

� �
ð7Þ

In this calculation, it is assumed that the start point (base)
and the end point (apex) of the prostate have a distance of Th
from the adjacent slices, meaning that there are two cone-
shaped volumes with Th as height and A1 and An as bases.

Volume Ratio

Volume ratio is a measure which indicates how much the
calculated volume of the prostate is deviated from that of
ground-truth contours.

VRatio %ð Þ ¼ min Vs⋅Vg

� �
max Vs⋅Vg

� � � 100 ð8Þ

where Vs and Vg are the volume values for the SRS algorithm
results and the ground truth, respectively. In both cases, the
volume was calculated using Eq. 7.

Mean and Maximum Absolute Distances

For each point on the auto-segmentation result, we measured
the distance from the corresponding point on the ground-truth
label to calculate the mean absolute distance (MAD) and max-
imum absolute distance (MAXD).

Results for the SRS Algorithm

We calculated the intra-user agreement (or variability) for each
user on 15 patients’ prostate MR images. Table 2 shows the
intra-user agreement results. We used intra-user agreement as
a baseline to determine the optimal configuration for the SRS
algorithm in which the accuracy of segmentation is compara-
ble to the intra-user agreement level where significant
speedups are achieved.

Table 1 Description of the prostate MR images used in terms of their
dimensions (pixels and mm), slice thickness (mm), and total number of
slices per volume dataset where the prostatewas visible for segmentation (N)

Total
studies

Dimensions
(pixels)

Dimensions
(mm)

Thickness
(mm)

Slices
per study

11 512×512 150×150 3 11≤N≤17
1 512×512 160×160 3 13

3 512×512 180×180 3 12≤N≤22
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In the SRS algorithm without post-editing (BSRS algorithm
Without Post-editing^), the number of unedited slices can be
between 1 and 5. The corresponding results in Tables 3, 4, and
5 are referred to as BUnedited i^where i represents the number of
unedited slices in between any two slices that have been manu-
ally contoured. For the SRS algorithm with post-editing (BSRS
algorithm with Post-editing^), all the segmentation results were
edited. The corresponding results are shown as BUnedited 0^.

Tables 3, 4, and 5 summarize the average results for the
SRS algorithm using rigid, affine, and nonrigid registration
methods. For each registration algorithm, the results are cal-
culated for different configurations from the case where any
segmentation result is edited and corrected (i.e., Unedited 0) to
the one that between any two manual segmentations, there are
five slices for which, the segmentation result has not been
edited (i.e., BUnedited 5^). For each case, the DSC for the
entire 3D prostate in MR images, volume ratio, MAD, and
MAXD measures are reported. In addition, the amount of
timesaving as well as the speedup factor for each configura-
tion is reported. The timesaving and speedup are measured by
comparing the SRS algorithm for a volume set with respect to
the manual segmentation of the same volume set. Each con-
figuration was calculated for five different expert users and the
results were averaged.

It is observed that the average intra-user agreement for
volume DSC and ratio were 89.82 and 89.47 %, respectively.
All three registration methods yielded volume DSCs at the
level of the intra-user agreement level with BUnedited 3^ con-
figuration. The corresponding speedup factors for rigid, affine,
and nonrigid registration methods were 3.33×, 2.72×, and
1.64×, respectively. Since all three registration methods meet
the intra-user agreement threshold, it is obvious that rigid

registration would be preferred due to higher speedup
achieved.With respect to volume ratio, it is observed that rigid
registration with BUnedited 2^ is able to produce an accuracy
of 90.65 %which is comparable to the intra-user agreement of
89.47 % leading to speedup factor of 2.64×. Figures 1 and 2
show a sample prostate MR volume dataset and the corre-
sponding segmentation result for one user.

Discussion

The contouring of medical images is a major part of diagnosis,
active surveillance, and treatment planning, but it faces a ma-
jor challenge because manual contouring is a tedious task and
it requires a significant time commitment by radiation oncol-
ogists. The aims of auto-segmentation tools are to reduce the
contouring time (higher efficiency) by generating labels that
require less user intervention in terms of editing or corrections.
The SRS algorithm was designed with the typical clinical
workflow in mind where the expert user interacts with the
segmentation algorithm to improve the accuracy. It is based
on the inter-slice registration ofMR images where the user can
correct all slices or skip one ormore slices in order to complete
the segmentation of the entire volume. This means that based
on the required accuracy, more slices can be skipped by the
user to achieve a higher speedup factor.

On the other hand, intra-user variability (or agreement) is a
well-known phenomenon inmedical image contouring caused
by the inherent complexity of medical images and the vague-
ness of the anatomical boundaries in such images. It is under-
stood that a segmentation accuracy similar to intra-user agree-
ment level is assumed acceptable by the expert user. In this
paper, we ran different experiments with the SRS algorithm
where multiple configurations of the algorithm were used. We
also used three registration methods (rigid, affine, and nonrig-
id) to propagate the user-generated labels through the remain-
ing slices in the volume. The speedup was measured by com-
paring the amount of manual contouring time for the entire
volume versus the SRS algorithm where the user contours/

Table 2 Average intra-user agreement results (±standard deviation) for
5 users for 15 datasets of prostate MR, which includes DSC for the entire
volume (%), volume ratio, MAD (mm), and MAXD (mm)

Volume (DSC) (%) Volume (ratio) (%) MAD (mm) MAXD (mm)

89.82±2.42 89.47±7.37 1.70±1.08 4.39±2.26

Table 3 Prostate segmentation average results (±standard deviation)
using the SRS algorithm with rigid registration for 15 patients
contoured by 5 users, which includes DSC for the entire volume (%),

volume ratio, MAD (mm), MAXD (mm), timesaving (%), and speedup
factor. Bi^ in BUnedited i^ that represents the number of unedited slices in
between any two slices that have been manually contoured

Unedited slices Volume (DSC) (%) Volume (ratio) (%) MAD (mm) MAXD (mm) Timesaving (%) Speedup

Unedited 0 94.35±7.30 91.38±4.46 1.08±0.42 3.39±0.88 27.46 1.38×

Unedited 1 92.73±7.76 91.33±5.04 1.39±0.43 3.95±0.92 46.56 1.87×

Unedited 2 90.96±12.36 90.65±5.10 1.79±0.46 4.63±0.89 62.19 2.64×

Unedited 3 89.31±15.44 88.42±5.96 2.26±0.52 5.56±0.96 69.96 3.33×

Unedited 4 85.15±17.17 83.93±7.67 2.69±0.67 6.33±1.11 74.13 3.87×

Unedited 5 77.15±18.62 80.50±9.62 3.31±0.87 7.41±1.35 77.73 4.49×
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corrects some slices and the SRS algorithm segments the re-
maining slices.

The optimal configuration of the SRS algorithm is the one
that yields an accuracy, using a given measure, similar to the
intra-user agreement level. It is observed that depending on
the accuracy measure, the optimal configuration of the SRS
algorithm differs. Figures 3 and 4 show the average volume
DSCs and volume ratios with respect to different SRS config-
urations. If the volume DSC is considered, the intra-user
agreement is 89.82 %. To achieve an accuracy similar to this
level, all three registration methods require Unedited 3 con-
figuration, which yields volume DSCs of 89.31, 89.94, and
90.58 %, for rigid, affine, and nonrigid registration methods,
respectively. The corresponding speedup factors were 3.33×,
2.72×, and 1.64×, respectively.

If volume ratio is considered, the intra-user agreement is
89.47 %. It is seen that rigid registration with Unedited 2
configuration is able to achieve volume ratio of 90.65 %,
which is comparable to intra-user agreement of 88.47 %while
yielding a speedup factor of 2.64×. Volume number is used in
PSA density calculation. Therefore, the high volume ratio of
the SRS algorithm means it can be used in such a calculation.
The speedup factor of 2.64× is equal to 62 % timesaving, a
significant amount of time-reduction in clinical settings, trans-
lating to higher patient throughput in healthcare system.

As it is seen from Fig. 4, rigid registration yields the best
results for volume ratio. This may be due to the fact that the

volume ratio only considers the volume number and ignores
the actual overlap between two contours. Nevertheless, for the
purpose of PSA density calculation, the volume number may
suffice in practice.

For therapy planning where the user chooses to edit the
segmentation result of the SRS algorithm for any given slice
(SRS with post-editing), the rigid registration still yields a
speedup factor of 1.38×, a timesaving of 27 % which could
translate to reduced cost of treatment.

Figure 5 presents the speedup factors for all three registration
methods with different SRS configurations. As it is seen, the
rigid registration yields higher speedup factors compared to af-
fine and nonrigid because of lower computational time. It must
be noted that the SRS algorithm was implemented in Matlab
(TM). Therefore, the speedup factors presented here can be seen
as the lower bound. If the SRS algorithm is implemented in C++
or GPUs, it is anticipated that the computational time be negli-
gible compared to the manual contouring time. This would
mean that the speedup factor for all three registration methods
would become the same (Fig. 5, the Bideal^ curve).

Conclusion

In this paper, we presented an algorithm for segmenting the
prostate gland in T2-weighted MR images. The proposed al-
gorithmwas inspired by the clinical workflowwhere an expert

Table 4 Prostate segmentation average results (±standard deviation)
using the SRS algorithm with affine registration for 15 patients contoured
by 5 users, which includes DSC for entire volume (%), volume ratio,MAD

(mm),MAXD (mm), timesaving (%), and speedup factor. Bi^ in BUnedited
i^ represents the number of unedited slices in between any two slices that
have been manually contoured

Unedited slices Volume (DSC) (%) Volume (ratio) (%) MAD (mm) MAXD (mm) Timesaving (%) Speedup

Unedited 0 94.35±7.30 91.38±4.46 1.08±0.42 3.39±0.88 17.82 1.22×

Unedited 1 92.86±7.57 91.06±4.95 1.37±0.45 3.95±0.95 41.80 1.72×

Unedited 2 91.39±11.07 89.99±5.32 1.72±0.49 4.57±0.98 56.08 2.28×

Unedited 3 89.94±13.30 87.85±6.46 2.11±0.56 5.41±1.13 63.27 2.72×

Unedited 4 86.59±14.40 83.81±8.06 2.47±0.69 6.11±1.31 67.10 3.04×

Unedited 5 78.61±15.35 79.21±10.09 3.01±0.90 6.08±1.39 70.70 3.41×

Table 5 Prostate segmentation average results (±standard deviation)
using the SRS algorithm with nonrigid registration for 15 patients
contoured by 5 users, which includes DSC for the entire volume (%),

volume ratio, MAD (mm), MAXD (mm), timesaving (%), and speedup
factor. Bi^ in BUnedited i^ represents the number of unedited slices in
between any two slices that have been manually contoured

Unedited slices Volume (DSC) (%) Volume (ratio) (%) MAD (mm) MAXD (mm) Timesaving (%) Speedup

Unedited 0 94.35±7.30 91.38±4.46 1.08±0.42 3.39±0.88 −17.79 0.85×

Unedited 1 92.77±7.61 89.58±2.22 1.35±0.43 4.14±0.95 24.22 1.32×

Unedited 2 92.19±11.89 88.57±4.57 1.52±0.40 4.61±0.86 33.87 1.51×

Unedited 3 90.58±15.23 82.86±6.52 2.00±0.46 5.69±1.03 39.00 1.64×

Unedited 4 88.48±16.42 77.56±8.04 2.34±0.56 6.45±1.09 41.59 1.71×

Unedited 5 85.15±17.95 71.59±9.91 2.74±0.68 7.12±1.11 44.45 1.80×
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Fig. 1 Prostate MR image
sequence for a sample volume
dataset. The solid labels represent
the consensus contours for the
prostate gland derived from the
manual contours of five expert
users

Fig. 2 Segmentation results for
the sample volume dataset shown
in Fig. 1 with the sequential
registration-based segmentation
(SRS) algorithm for a
configuration where two slice
contours remain unedited
between each pair of manually
contoured slices. The
segmentation results are shown
for rigid registration (dashed red
line), affine registration (dotted
blue line), and demon (nonrigid)
registration (dashed-dotted green
line). The solid line labels are the
ground-truth (consensus)
contours created by manual
contours of five expert users
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user interacts with the segmentation algorithm to improve the
accuracy. The SRS algorithm requires user interaction to con-
tour a slice and depending on the selected configuration, one
or more slices can be skipped before manually contouring the
next slice. The proposed algorithm exploits the inter-slice sim-
ilarity of the images in a volume dataset and eliminates the
need for an atlas, which minimizes the computational costs.
We verified the performance of the algorithm using 15
datasets of prostate MR images with 5 radiation oncologists
contouring the images. Different configurations of the algo-
rithm yielded different performance results. For example, the
SRS algorithm with rigid registration produced results with an
average volume DSC of 89.31 %, which is comparable to the
intra-user agreement level (i.e., 89.82 %) while reducing the
contouring time by 70 % (speedup factor of 3.33×). The

timesaving in contouring, which is a high-demand daily task
in hospitals, can translate to higher patient throughput in
healthcare system.
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